
Mobile Application Design and Development Summer 2011

Northeastern University 1

Mobile Application (Design and)
Development

7th class

Prof. Stephen Intille
s.intille@neu.edu

Mobile Application Design and Development Summer 2011

Northeastern University 2

Q&A
• Workspace setup in lab. Anyone try it?

• Anyone looking for a partner?

• Boggle – various strategies
– Buttons, swiping, 2d graphics, pause button,

etc.

Mobile Application Design and Development Summer 2011

Northeastern University 3

Today
• Overview of 2d graphics (part 1)
• Looking at graphics in Sudoku code

• Two design papers
– Pixel Perfect Code: How to Marry Interaction

and Visual Design the Android Way
Presenter: Kevin Rottman

– FIRST Else smartphone hands-on demo from
Mobile World Congress 2010
Presenter: Trevor Sontag

Mobile Application Design and Development Summer 2011

Northeastern University 4

Schedule
• Sunday: programming assignment 2 due
• Monday: guest lecture Jason Nawyn
• Tuesday: in-class paper prototyping

(bring what you need)
• Wednesday: guest lecture Fahd Albinali

Preliminary paper prototype design due
• Thursday: location and sensing

• Sunday: Programming assignment 3 due

Mobile Application Design and Development Summer 2011

Northeastern University 5

Graphics in Android

• Custom 2D graphics library
• OpenGL ES 1.0 for high performance 3D

graphics
• Most common 2d graphics:

android.graphics.drawable
• From ADG: “When starting a project, it's

important to consider exactly what your
graphical demands will be”

Mobile Application Design and Development Summer 2011

Northeastern University 6

2d graphics option #1
• Draw into a View object from your layout

– Drawing/animation of graphics handled by
system's normal View hierarchy drawing
process

– You simply define graphics to go inside View
– Call invalidate(); handle onDraw() callback
– Best for drawing graphics that are not part of

a performance-intensive game
– Good for displaying static graphics or

displaying animations within an otherwise
static app

Mobile Application Design and Development Summer 2011

Northeastern University 7

2d graphics option #2
• Draw your graphics directly to a Canvas

– You call the appropriate class's draw()
method (passing it your Canvas), or one of
the Canvas draw...() methods

– You are in control of animation
– Best if you application needs to regularly

redraw itself
– Fast animation games must use this (or 3d)
– Can use separate thread, manage a

SurfaceView, and perform draws to the
Canvas as fast as your thread is capable

Mobile Application Design and Development Summer 2011

Northeastern University 8

2d graphics

• Drawable
– Abstraction for “something that can be

drawn”
– Types

• BitmapDrawable
• ShapeDrawable
• PictureDrawable
• LayerDrawable
• Others...

Mobile Application Design and Development Summer 2011

Northeastern University 9

Drawable

• Three ways to define and instantiate:
– Using an image saved in your project

resources
– Using an XML file that defines the Drawable

properties
– Using the normal class constructors

Mobile Application Design and Development Summer 2011

Northeastern University 10

Creating from resources

• Easy
• Image types:

– PNG (preferred)
– JPG (acceptable)
– GIF (discouraged)

• Add your file to the res/drawable/
directory
– E.g., my_image.png is referenced as

my_image

(E.g., my_image.png is referenced as my_image).

Mobile Application Design and Development Summer 2011

Northeastern University 11

ImageView using resources
LinearLayout mLinearLayout;

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Create a LinearLayout in which to add the ImageView
mLinearLayout = new LinearLayout(this);

// Instantiate an ImageView and define its properties
ImageView i = new ImageView(this);
i.setImageResource(R.drawable.my_image);

// set the ImageView bounds to match the Drawable's dimensions
i.setAdjustViewBounds(true
i.setLayoutParams(new Gallery.LayoutParams(LayoutParams.WRAP_CONTENT,

LayoutParams.WRAP_CONTENT));

// Add the ImageView to the layout and set the layout as the content view
mLinearLayout.addView(i);
setContentView(mLinearLayout);

}

Mobile Application Design and Development Summer 2011

Northeastern University 12

Handling image res as drawable
Resources res = mContext.getResources();
Drawable myImage = res.getDrawable(R.drawable.my_image);

Add a resource Drawable to an ImageView in the XML layout:

<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:tint="#55ff0000"
android:src="@drawable/my_image"/>

Mobile Application Design and Development Summer 2011

Northeastern University 13

Creating from resource XML
res/drawable/expand_collapse.xml:

<transition xmlns:android="http://schemas.android.com/apk/res/android">
<item android:drawable="@drawable/image_expand">
<item android:drawable="@drawable/image_collapse">

</transition>

Resources res = mContext.getResources();
TransitionDrawable transition = (TransitionDrawable)
res.getDrawable(R.drawable.expand_collapse);
ImageView image = (ImageView) findViewById(R.id.toggle_image);
image.setImageDrawable(transition);

Run forward for 1s:
transition.startTransition(1000);

Mobile Application Design and Development Summer 2011

Northeastern University 14

ShapeDrawable
public class CustomDrawableView extends View {

private ShapeDrawable mDrawable;

public CustomDrawableView(Context context) {
super(context);

int x = 10;
int y = 10;
int width = 300;
int height = 50;

mDrawable = new ShapeDrawable(new OvalShape());
mDrawable.getPaint().setColor(0xff74AC23);
mDrawable.setBounds(x, y, x + width, y + height);

}

protected void onDraw(Canvas canvas) {
mDrawable.draw(canvas);

}
}

Mobile Application Design and Development Summer 2011

Northeastern University 15

ShapeDrawable
CustomDrawableView mCustomDrawableView;

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
mCustomDrawableView = new CustomDrawableView(this);

setContentView(mCustomDrawableView);
}

Mobile Application Design and Development Summer 2011

Northeastern University 16

Nine-patch

• Bottom image identifies the region in which the contents
of the View are allowed. If the contents don't fit in this
region, then the image will be stretched so that they do.

• Top image shows pixels
that will be replicated
for stretching

Mobile Application Design and Development Summer 2011

Northeastern University 17

Draw nine-patch tool

• VERY useful

Mobile Application Design and Development Summer 2011

Northeastern University 18

Adding drawable to button
<Button id="@+id/tiny"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerInParent="true"
android:text="Tiny"
android:textSize="8sp"
android:background="@drawable/my_button_background"/>

<Button id="@+id/big"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_centerInParent="true"
android:text="Biiiiiiig text!"
android:textSize="30sp"
android:background="@drawable/my_button_background"/>

Mobile Application Design and Development Summer 2011

Northeastern University 19

What is a canvas?
• Interface to drawing surface
• Holds “draw” calls
• Actual drawing uses a Bitmap put onto

the window
• You can...

– Use OnDraw() (Canvas provided)
– Get canvas (using SurfaceView objects)
– Create new canvas...

Mobile Application Design and Development Summer 2011

Northeastern University 20

Create new canvas

• You can then carry to another Canvas
using a Canvas.drawBitmap(Bitmap,...)
method

• Best to draw final graphics via Canvas
from View.onDraw() or
SurfaceHolder.lockCanvas()

Bitmap b = Bitmap.createBitmap(100, 100, Bitmap.Config.ARGB_8888);
Canvas c = new Canvas(b);

Mobile Application Design and Development Summer 2011

Northeastern University 21

Using View.onDraw()

• Android only calls onDraw() as necessary
• Use invalidate() to indicate a redraw is

necessary
– Better:

Mobile Application Design and Development Summer 2011

Northeastern University 22

Using View.onDraw()

• Android only calls onDraw() as necessary
• Use invalidate() to indicate a redraw is

necessary
– Not immediate
– Better:

Mobile Application Design and Development Summer 2011

Northeastern University 23

Using View.onDraw()

• Use Canvas and all Canvas.draw...()
methods

• After onDraw() finishes, Android does the
work to draw actual Bitmap

(Snake example in API)

Mobile Application Design and Development Summer 2011

Northeastern University 24

Using SurfaceView

• Dedicated drawing surface within the
View hierarchy

• Offer a drawing surface to a secondary
thread (decouple from UI/View hierarchy)

(Lunar Lander example in API)

Mobile Application Design and Development Summer 2011

Northeastern University 25

Sudoku

• Looking at/questions about code...

Mobile Application Design and Development Summer 2011

Northeastern University 26

Readings

