
Mobile Application Design and Development Summer 2011

Northeastern University 1

Mobile Application (Design and)
Development

20th class

Prof. Stephen Intille
s.intille@neu.edu

Mobile Application Design and Development Summer 2011

Northeastern University 2

Today
• Q&A
• A bit on Bluetooth
• 3 presentations

Mobile Application Design and Development Summer 2011

Northeastern University 3

Things you can do
• Manage/monitor BT settings

– Control discoverability
– Discover nearby BT devices
– Use BT as a proximity-based peer-to-peer

connection
• Use WiFi

– Scan for hotspots
– Creating and modify WiFi settings
– Monitor Internet connectivity
– Control and monitor Internet settings

Mobile Application Design and Development Summer 2011

Northeastern University 4

Bluetooth

• Available since v2.0
• Not all devices will have BT (but nearly)

• Designed for short-range, low-bandwidth,
peer-to-peer communication

• Only encrypted, pair communication
supported on Android (as of 2.1)

Mobile Application Design and Development Summer 2011

Northeastern University 5

BT components

• BluetoothAdapter (Local device)
• BluetoothDevice (Remote devices)
• BluetoothSocket

– Call createRfcommSockettoServiceRecord on
a remote BT Device object to initiate comm.

• BluetoothServerSocket
– Listen for incoming connection requests from

Bluetooth Sockets on remote devices

Mobile Application Design and Development Summer 2011

Northeastern University 6

BT basics
// Right now can only get default (most devices only have one)
BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

// (Manifest): Manifest permission nodes
<uses-permission android:name="android.permission.BLUETOOTH"/>
// Modify local device BT settings:
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

Mobile Application Design and Development Summer 2011

Northeastern University 7

BT basics
// Reading Bluetooth Adapter properties
BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

String toastText;
if (bluetooth.isEnabled()) {

String address = bluetooth.getAddress();
String name = bluetooth.getName();
toastText = name + " : " + address;

}
else

toastText = "Bluetooth is not enabled";

Toast.makeText(this, toastText, Toast.LENGTH_LONG).show();

bluetooth.setName("Blackfang");

Mobile Application Design and Development Summer 2011

Northeastern University 8

BT basics
// Enabling Bluetooth and tracking the adapter state
BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

BroadcastReceiver bluetoothState = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
String prevStateExtra = BluetoothAdapter.EXTRA_PREVIOUS_STATE;
String stateExtra = BluetoothAdapter.EXTRA_STATE;
int state = intent.getIntExtra(stateExtra, -1);
int previousState = intent.getIntExtra(prevStateExtra, -1);

String tt = "";
switch (state) {
case (BluetoothAdapter.STATE_TURNING_ON) : {
tt = "Bluetooth turning on"; break;

}
case (BluetoothAdapter.STATE_ON) : {
tt = "Bluetooth on";
unregisterReceiver(this);
break;

}
case (BluetoothAdapter.STATE_TURNING_OFF) : {
tt = "Bluetooth turning off"; break;

}
case (BluetoothAdapter.STATE_OFF) : {
tt = "Bluetooth off"; break;

}
default: break;

}

Toast.makeText(this, tt, Toast.LENGTH_LONG).show();
}

};

Mobile Application Design and Development Summer 2011

Northeastern University 9

BT basics

• Also possible to enable and disable
directly if BLUETOOTH_ADMIN set in
manifest
– Use sparingly
– Better to get user to agree

// Enabling Bluetooth and tracking the adapter state (continued)

if (!bluetooth.isEnabled()) {
String actionStateChanged = BluetoothAdapter.ACTION_STATE_CHANGED;
String actionRequestEnable = BluetoothAdapter.ACTION_REQUEST_ENABLE;
registerReceiver(bluetoothState, new IntentFilter(actionStateChanged));
startActivityForResult(new Intent(actionRequestEnable), 0);

}

Mobile Application Design and Development Summer 2011

Northeastern University 10

Discovery modes

• SCAN_MODE_CONNECTABLE_DISCOVERA
BLE
– Device discoverable from any BT device

• SCAN_MODE_CONNECTABLE
– Devices that have previously connected and

bonded to the local device can find it during
discovery; others cannot

• SCAN_MODE_NONE
– Turned off

Mobile Application Design and Development Summer 2011

Northeastern University 11

Discovery modes

• By default, discoverable for 2 min
(You can change this with an
EXTRA_DISCOVERABLE_DURATION)

• Discovering other devices can take 12
seconds
– Impacts other performance of BT...

Mobile Application Design and Development Summer 2011

Northeastern University 12

Monitoring discovery modes
@Override
protected void onActivityResult(int requestCode,

int resultCode, Intent data) {
if (requestCode == DISCOVERY_REQUEST) {

boolean isDiscoverable = resultCode > 0;
int discoverableDuration = resultCode;

}
}

// Monitoring discoverability modes
registerReceiver(new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent) {

String prevScanMode = BluetoothAdapter.EXTRA_PREVIOUS_SCAN_MODE;
String scanMode = BluetoothAdapter.EXTRA_SCAN_MODE;
int scanMode = intent.getIntExtra(scanMode, -1);
int prevMode = intent.getIntExtra(prevScanMode, -1);

}
}, new IntentFilter(BluetoothAdapter.ACTION_SCAN_MODE_CHANGED));

Mobile Application Design and Development Summer 2011

Northeastern University 13

Monitoring discovery
// Monitoring discovery
BroadcastReceiver discoveryMonitor = new BroadcastReceiver() {

String dStarted = BluetoothAdapter.ACTION_DISCOVERY_STARTED;
String dFinished = BluetoothAdapter.ACTION_DISCOVERY_FINISHED;

@Override
public void onReceive(Context context, Intent intent) {
if (dStarted.equals(intent.getAction())) {

// Discovery has started.
Toast.makeText(getApplicationContext(), "Started...", Toast.LENGTH_SHORT).show();

}
else if (dFinished.equals(intent.getAction())) {

// Discovery has completed.
Toast.makeText(getApplicationContext(),

"Discovery Completed...", Toast.LENGTH_SHORT).show();
}

}
};
registerReceiver(discoveryMonitor, new IntentFilter(dStarted));
registerReceiver(discoveryMonitor, new IntentFilter(dFinished));

Mobile Application Design and Development Summer 2011

Northeastern University 14

Discovering remote BT devices
// Discovering remote Bluetooth Devices
BroadcastReceiver discoveryResult = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
String remoteDeviceName =

intent.getStringExtra(BluetoothDevice.EXTRA_NAME);
BluetoothDevice remoteDevice;
remoteDevice = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

Toast.makeText(getApplicationContext(),
"Discovered: " + remoteDeviceName,
Toast.LENGTH_SHORT).show();

// TODO Do something with the remote Bluetooth Device.
}

};
registerReceiver(discoveryResult,

new IntentFilter(BluetoothDevice.ACTION_FOUND));

if (!bluetooth.isDiscovering())
bluetooth.startDiscovery();

Mobile Application Design and Development Summer 2011

Northeastern University 15

BT communcation

• BT communications API wrappers for
RFCOMM (BT radio frequency
communications protocol)

• RFCOMM supports RS232 serial
communication

• In short, gives you communication sockets
between two devices

Mobile Application Design and Development Summer 2011

Northeastern University 16

RFCOMM

• BluetoothServerSocket
– Listening socket for initiating link

• BluetoothSocket
– Create a client socket to connect to a

listening BT Server Socket (returned by
ServerSocket once connection made)

– Used on server and client side to transfer data

Mobile Application Design and Development Summer 2011

Northeastern University 17

Listening BT socket conn. req.
private void requestBluetooth() {
startActivityForResult(new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE),

DISCOVERY_REQUEST);}

protected void onActivityResult(int requestCode, int resultCode, Intent data) {
if (requestCode == DISCOVERY_REQUEST) {
boolean isDiscoverable = resultCode > 0;
int discoverableDuration = resultCode;
if (isDiscoverable) {

UUID uuid = UUID.fromString("a60f35f0-b93a-11de-8a39-08002009c666");
String name = "bluetoothserver";

final BluetoothServerSocket btserver = bluetooth.listenUsingRfcommWithServiceRecord(name, uuid);

Thread acceptThread = new Thread(new Runnable() {
public void run() {
try { // Block until client connection established.
BluetoothSocket serverSocket = btserver.accept();
// TODO Transfer data using the server socket

} catch (IOException e) {
Log.d("BLUETOOTH", e.getMessage());

}}});
acceptThread.start();

}}}

Mobile Application Design and Development Summer 2011

Northeastern University 18

To establish communication...

• Remote device must be discoverable
• Remote device must accept connections

using a Bluetooth Server Socket
• Local and remote devices must be paired

(if not, user will be prompted to pair when
you initiate connection request)

Mobile Application Design and Development Summer 2011

Northeastern University 19

Checking remote devices
// Checking remote devices for discoverability and pairing
final BluetoothDevice device = bluetooth.getRemoteDevice("01:23:77:35:2F:AA");
final Set<BluetoothDevice> bondedDevices = bluetooth.getBondedDevices();

BroadcastReceiver discoveryResult = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
BluetoothDevice remoteDevice = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

if ((remoteDevice.equals(device) &&
(bondedDevices.contains(remoteDevice)) {

// TODO Target device is paired and discoverable
}};

registerReceiver(discoveryResult, new IntentFilter(BluetoothDevice.ACTION_FOUND));

if (!bluetooth.isDiscovering())
bluetooth.startDiscovery();

Mobile Application Design and Development Summer 2011

Northeastern University 20

Connecting
// Connecting to a remote Bluetooth server

try{
BluetoothDevice device = bluetooth.getRemoteDevice("00:23:76:35:2F:AA");
BluetoothSocket clientSocket =
device.createRfcommSocketToServiceRecord(uuid);

clientSocket.connect();
// TODO Transfer data using the Bluetooth Socket

} catch (IOException e) {
Log.d("BLUETOOTH", e.getMessage());

}

Mobile Application Design and Development Summer 2011

Northeastern University 21

Sending strings
// Sending and receiving strings using Bluetooth Sockets
private void sendMessage(String message){
OutputStream outStream;
try {
outStream = socket.getOutputStream();

// Add a stop character.
byte[] byteArray = (message + " ").getBytes();
byteArray[byteArray.length - 1] = 0;

outStream.write(byteArray);
} catch (IOException e) { }

}

private String listenForMessage()
String result = "";
int bufferSize = 1024;
byte[] buffer = new byte[bufferSize];

Mobile Application Design and Development Summer 2011

Northeastern University 22

Sending strings
try {
InputStream instream = socket.getInputStream();
int bytesRead = -1;

while (true) {
bytesRead = instream.read(buffer);
if (bytesRead != -1) {
while ((bytesRead == bufferSize) && (buffer[bufferSize-1] != 0)){
message = message + new String(buffer, 0, bytesRead);
bytesRead = instream.read(buffer);

}
message = message + new String(buffer, 0, bytesRead - 1);

return result;
}

}

} catch (IOException e) {}

return result;
}

Mobile Application Design and Development Summer 2011

Northeastern University 23

Managing network connection

• Monitor intents for changes in network
connectivity

• APIs provide control over settings
• Users can specify connectivity

preferences

Mobile Application Design and Development Summer 2011

Northeastern University 24

Managing network connection

• ConnectivityManager
– Represents the Network Connectivity Service
– Monitor, configure, and control radios
– Need ACCESS_NETWORK_STATE and

CHANGE_NETWORK_STATE permissions
– Can get user pref for background data

transfers (enforced at app level)
(Settings > Accounts and sync > Background)

• Beware ... Mobile data bills!

Mobile Application Design and Development Summer 2011

Northeastern University 25

Conectivity Manager
// Accessing the Connectivity Manager
String service = Context.CONNECTIVITY_SERVICE;
ConnectivityManager connectivity = (ConnectivityManager)getSystemService(service);

Boolean backgroundEnabled = connectivity.getBackgroundDataSetting();

registerReceiver(
new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent) {

// Do something when the background data setting changes.
},

new
IntentFilter(ConnectivityManager.ACTION_BACKGROUND_DATA_SETTING_CHANGED));

Mobile Application Design and Development Summer 2011

Northeastern University 26

Tips from the field

• Tips from using Android and Bluetooth
communicating with hardware (Wockets)
and HR monitor

• If you are connecting to multiple radios at
the same time (multithreaded), you might
want to serialize the requests

Mobile Application Design and Development Summer 2011

Northeastern University 27

Tips from the field

• It takes time (> 5 seconds) for Bluetooth to
be enabled/disabled/change
states. Make sure to verify (via polling or
callbacks) that the radio is in the state you
think it is in.

• Always verify the Bluetooth state is what
you think it is. The user (or other apps) can
change settings from underneath your
app at any time.

Mobile Application Design and Development Summer 2011

Northeastern University 28

Tips from the field

• Make sure you have the Bluetooth
permissions (there are 2, one for using
Bluetooth and 1 for administrating
Bluetooth for adding new devices, etc)

Mobile Application Design and Development Summer 2011

Northeastern University 29

Tips from the field

• Make sure to restore Bluetooth state to
where you found it before changing any
settings. If the user left it on for a hands
free device, then used it to do something
with your app, you want to make sure you
don't just switch it off when your app is
done so the user can no longer use their
hands free device. Same thing in reverse,
if the user had it off to save power, make
sure you turn if off when done.

Mobile Application Design and Development Summer 2011

Northeastern University 30

Tips from the field

• Android uses BlueZ (BT stack for Linux) and
under Ubuntu Linux, Fahd has found that if
you write an application with multiple
threads to manage 14+ connections, it
does not work as well as forking processes
to manage the 14+ connections: a case
for actually having multiple processes
managing connections ... ugly but was
more robust on Linux

Mobile Application Design and Development Summer 2011

Northeastern University 31

Tips from the field

• At some point, I got better luck on some
phones with reflection rather than using
the standard API... specifically data
arrived more smoothly not sure why...

Mobile Application Design and Development Summer 2011

Northeastern University 32

Tips from the field

• When allocating and deallocating
objects, be very cautious with memory
leaks...
– Use the heap features in Eclipse to track how

your heap is doing
– Especially when you are

disconnecting/reconnecting etc.
• Log everything to be able to identify the

problems.

Mobile Application Design and Development Summer 2011

Northeastern University 33

Tips from the field

• When connecting to 1 radio, worked fine
on all tested phone. When connecting to
2 radios, on some phones (GalaxyS 2.1)
the connections alternated slowly and
sometimes created data loss.

• Make sure to verify that you are not losing
data (e.g. send consecutive numbers and
look for gaps).

Mobile Application Design and Development Summer 2011

Northeastern University 34

Tips from the field

• Pay special attention to accurate
timestamping. Run tests and make sure
you can recover the signal structure as
accurately as possible

• RSSI noisy but does work well enough to
consider doing some interesting things
with indoor location.

Mobile Application Design and Development Summer 2011

Northeastern University 35

Tips from the field

• If you run into trouble, or discover
something great, email it and share it with
everyone...

Mobile Application Design and Development Summer 2011

Northeastern University 36

Accessing network info
// Get the active network information.
NetworkInfo activeNetwork = connectivity.getActiveNetworkInfo();
int networkType = networkInfo.getType();
switch (networkType) {

case (ConnectivityManager.TYPE_MOBILE) : break;
case (ConnectivityManager.TYPE_WIFI) : break;
default: break;

}

// Get the mobile network information.
int network = ConnectivityManager.TYPE_MOBILE;
NetworkInfo mobileNetwork = connectivity.getNetworkInfo(network);
NetworkInfo.State state = mobileNetwork.getState();
NetworkInfo.DetailedState detailedState = mobileNetwork.getDetailedState();

Mobile Application Design and Development Summer 2011

Northeastern University 37

Get/set network

• Using a BroadcastReceiver, you can
monitor for
– Failover from preferred network, no

connection, connection failure messages,
reasons for possible failover

// Find and set preferred network
int networkPref = connectivity.getNetworkPreference();
Connectivity.setNetworkPreference(NetworkPreference.PREFER_WIFI);

// Control the availability of network types (turn off WiFi, turn on mobile)
connectivity.setRadio(NetworkType.WIFI, false);
connectivity.setRadio(NetworkType.MOBILE, true);

Mobile Application Design and Development Summer 2011

Northeastern University 38

WiFi manager
// Accessing the Wi-Fi Manager
String service = Context.WIFI_SERVICE;
WifiManager wifi = (WifiManager)getSystemService(service);

// ***
// (Manifest): Wi-Fi Manager WiFi Permissions
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

// ***
// Monitoring and changing Wi-Fi state
if (!wifi.isWifiEnabled())

if (wifi.getWifiState() != WifiManager.WIFI_STATE_ENABLING)
wifi.setWifiEnabled(true);

Mobile Application Design and Development Summer 2011

Northeastern University 39

WiFi

• You can monitor
– Wi-Fi hardware status changes
– Connection point changes

• Mac address, IP address, etc.
– Connectivity state changes
– Signal strength changes

