
Mobile Application Design and Development Summer 2011

Northeastern University 1

Mobile Application (Design and)
Development

19th class

Prof. Stephen Intille
s.intille@neu.edu

Mobile Application Design and Development Summer 2011

Northeastern University 2

Today
• Schedule code reviews / Q&A?
• Final project

– Schedule
– Checklist

http://www.ccs.neu.edu/home/intille/teaching/MAD/FinalProjectChecklist.htm

• Optimization
• 4 presentations

Mobile Application Design and Development Summer 2011

Northeastern University 3

Schedule

• Programming assignment 5 due today
• Project presentations: 22nd and 23rd

• App due: 23rd 8PM (+ available for other teams to review)

• Grade and feedback available: EOD 24th

• Contest voting: 28th – 29th

• Final download for revised grades: 29th

Mobile Application Design and Development Summer 2011

Northeastern University 4

Optimization

• Mobiles have limited CPU and storage
and battery life
– Worth trying to be efficient
– Battery life tracker will flag your app

• Two goals
– Don't do work that you don't need to do.
– Don't allocate memory if you can avoid it.

Mobile Application Design and Development Summer 2011

Northeastern University 5

BUT...

• Optimize your DESIGN first

• Then optimize your choice of data
structures and algorithms

• Then initially program for speed

• Only at a last stop optimize code

Mobile Application Design and Development Summer 2011

Northeastern University 6

Before you start...

• ALWAYS measure; know you have a
problem

• Google’s recs based on Caliper
microbenchmarking framework for Java
– Google's open-source framework for writing,

running and viewing the results of
JavaMicrobenchmarks

Mobile Application Design and Development Summer 2011

Northeastern University 7

Microbenchmark fallibility

• JIT compiler will likely compile your
bytecode differently from real life

• Valid only for the particular hardware, OS
and JRE run on; small change to any
could lead to different results

• Less likely to have a cache miss
• Multithreading not considered
• Inputs may not be representative of what

you get in real life

Mobile Application Design and Development Summer 2011

Northeastern University 8

Challenge: hardware platforms

• Different versions of the VM running on
different processors running at different
speeds.

• Measurement on the emulator tells you
very little about performance on any
device.

• If you want to know how your app
performs on a given device, you need to
test on that device.

Mobile Application Design and Development Summer 2011

Northeastern University 9

JIT

• Huge differences between devices with
and without a JIT
– “Best" code for a device with a JIT is not

always the best code for a device without

Mobile Application Design and Development Summer 2011

Northeastern University 10

Object creation not free

• Allocating memory is always more
expensive than not allocating memory
– 2.3 has concurrent GC

• Try to avoid creating GCs

Mobile Application Design and Development Summer 2011

Northeastern University 11

Examples

• If you have a method returning a string,
and you know that its result will always be
appended to a StringBuffer anyway,
change your signature and
implementation so that the function does
the append directly, instead of creating a
short-lived temporary object.

Mobile Application Design and Development Summer 2011

Northeastern University 12

Examples

• When extracting strings from a set of input
data, try to return a substring of the
original data, instead of creating a copy.
You will create a new String object, but it
will share the char[] with the data. (The
trade-off being that if you're only using a
small part of the original input, you'll be
keeping it all around in memory anyway if
you go this route.)

Mobile Application Design and Development Summer 2011

Northeastern University 13

Examples

• An array of ints is a much better than an
array of Integers, but this also generalizes
to the fact that two parallel arrays of ints
are also a lot more efficient than an array
of (int,int) objects. The same goes for any
combination of primitive types.

Mobile Application Design and Development Summer 2011

Northeastern University 14

Examples

• If you need to implement a container that
stores tuples of (Foo,Bar) objects, try to
remember that two parallel Foo[] and
Bar[] arrays are generally much better
than a single array of custom (Foo,Bar)
objects.
(The exception to this, of course, is when you're designing an API for
other code to access; in those cases, it's usually better to trade
good API design for a small hit in speed. But in your own internal
code, you should try and be as efficient as possible.)

Mobile Application Design and Development Summer 2011

Northeastern University 15

Static

• If you don't need to access an object's
fields, make your method static

• Invocations will be about 15%-20% faster
• Also good practice: can tell from the

method signature that calling the method
can't alter the object's state

Mobile Application Design and Development Summer 2011

Northeastern University 16

Avoid internal getters/setters

• Virtual method calls are expensive, much
more so than instance field lookups

• For public interface, use getters/setters
• Internally to class, access fields directly

– i.e., don’t do i = getCount()

• Without a JIT, 3x faster
• With a JIT, 7x faster

Mobile Application Design and Development Summer 2011

Northeastern University 17

Use static final for constants

• No <clinit> method required
• Avoid field lookups

Mobile Application Design and Development Summer 2011

Northeastern University 18

For-each loop syntax
static class Foo {

int mSplat; }
Foo[] mArray = ...

public void zero() {
int sum = 0;
for (int i = 0; i < mArray.length; ++i) {

sum += mArray[i].mSplat; }}

public void one() {
int sum = 0;
Foo[] localArray = mArray;
int len = localArray.length;

for (int i = 0; i < len; ++i) {
sum += localArray[i].mSplat; }}

public void two() {
int sum = 0;
for (Foo a : mArray) {

sum += a.mSplat; }}

Zero slowest

One faster

Two faster for devices without JIT;
same as One otherwise

Mobile Application Design and Development Summer 2011

Northeastern University 19

Limit use of floating point

• Floating-point is about 2x slower than
integer on Android devices
(True with and without FPU)

• No difference between float and double

Mobile Application Design and Development Summer 2011

Northeastern University 20

Use libraries

• Might get lucky and be replaced with
hand-coded assembler
– Examples:

• String.indexOf
• System.arrayCopy (9x faster than hand-coded

loop)

Mobile Application Design and Development Summer 2011

Northeastern University 21

Native code

• Cost with transition
• Pain in the neck to compile for various

resources
• GC issues

• Primarily useful for porting existing native
codebase, not for "speeding up" parts of a
Java app.

Mobile Application Design and Development Summer 2011

Northeastern University 22

Responsiveness
• Want to avoid the Application Not

Responding (ANR) dialog
– No response to an input event within 5s
– BroadcastReceiver fails to finish in 10s

• Danger points
– Net access
– Computationally intensive operations
– File operations
– DB operations

Mobile Application Design and Development Summer 2011

Northeastern University 23

Responsiveness

• Method in the main thread should do as
little work as possible

• Activities should do as little as possible to
set up in key life-cycle methods such as
onCreate() and onResume()

• Don’t block waiting for a thread to
complete ... Use the Handler or AsyncTask

Mobile Application Design and Development Summer 2011

Northeastern University 24

What will feel slow?

• 200+ms lag
– If your application is doing work in the

background in response to user input, show
that progress is being made (ProgressBar and
ProgressDialog are useful for this)

– In games, calculate moves in child thread
– Use a splash screen during setup, or render

main view and fill in info asynchronously
– Always indicate progress being made

Mobile Application Design and Development Summer 2011

Northeastern University 25

Watch out for writing...

Mobile Application Design and Development Summer 2011

Northeastern University 26

What will feel broken?

• App can be snappy but feel broken with
sensors

• Provide feedback on
– Sensor state
– What sensors know
– Sensor noise

Mobile Application Design and Development Summer 2011

Northeastern University 27

Responsiveness in BR

• Don’t use child threads because life of
BroadcastReceiver is short

• Use a Service instead

As a side note, you should also avoid starting an Activity from an Intent Receiver, as it will spawn a new screen that will steal focus from whatever application the user is currently h

Mobile Application Design and Development Summer 2011

Northeastern University 28

Good citizen

• Avoid starting an Activity from an Intent
Receiver
– Spawns a new screen that will steal focus from

whatever application the user is currently has
running.

– If your application has something to show the
user in response to an Intent broadcast, it
should do so using the Notification Manager

As a side note, you should also avoid starting an Activity from an Intent Receiver, as it will spawn a new screen that will steal focus from whatever application the user is currently h

Mobile Application Design and Development Summer 2011

Northeastern University 29

Testing responsiveness

• Use StrictMode to help find potentially
long running operations such as network
or database operations that you might
accidentally be doing your main thread

Mobile Application Design and Development Summer 2011

Northeastern University 30

Seamlessness

• Beware of popping up dialogues
– During testing may make sense
– But may conflict with other apps

(Use Notification instead)

• App losing state because onPause and
onResume not working properly

Mobile Application Design and Development Summer 2011

Northeastern University 31

Think unpredictable

• Another app can pop up at any time
(E.g. phone app)
– Fires the onSaveInstanceState() and

onPause() methods
– Will likely result in your app being killed

• Beware if user was editing data

Mobile Application Design and Development Summer 2011

Northeastern University 32

Share

• “Android Way” if data to expose is to use
a ContentProvider

Mobile Application Design and Development Summer 2011

Northeastern University 33

Be polite

• Don’t spawn Activities except in response
to user action
– Could become a “keystroke bandit”
– I.e., don’t call startActivity from

BroadcastReceivers or Services

Mobile Application Design and Development Summer 2011

Northeastern University 34

Activities created equal

• Use multiple Activity object instances
• Don’t think of Activity as single entry point

to app
• Think of your application as a “federation

of Activity objects”
– Helps with history and “backstack” model
– Makes code a bit more modular

Mobile Application Design and Development Summer 2011

Northeastern University 35

Respect Themes

• When designing your UIs, you should try
and avoid rolling your own
– Jarring
– Confusing

• Use a theme so you start with the same
basic components
– See Applying Styles and Themes

Mobile Application Design and Development Summer 2011

Northeastern University 36

Respect diversity (of hardware)

• Many screen resolutions and dimensions
– Aria: 320 x 480 pixels (1.5 ratio)
– Droid X: 480 x 854 pixels (1.8 ratio)

• Variety of data connection speeds
– GPRS (33kb/s in practice)
– 3G (about 4x faster GPRS)
– WiFi (about 120x faster GPRS)

Mobile Application Design and Development Summer 2011

Northeastern University 37

Respect diversity (of hardware)

• Tip: design for
– Smallest screen
– Slowest phone CPU
– Slowest phone Internet (GPRS)

(Change emulator setting)
– Worst battery life

• MUCH Easier to scale up than down

Mobile Application Design and Development Summer 2011

Northeastern University 38

Save battery

• Great differences
– HTC Dream: 1150mAh
– HTC Magic: 1350mAh
– Samsung I7500: 1500mAh
– Asus Eee PC: 5800mAh

• Write efficient code

• Don’t repeat failed operations
– Don’t get Internet connection? Wait

Mobile Application Design and Development Summer 2011

Northeastern University 39

Relative use of features

Mobile Application Design and Development Summer 2011

Northeastern University 40

Real life use

• Watching YouTube: 340mA = 3.4 hours
• Browsing 3G web: 225mA = 5 hours
• Typical usage: 42mA average = 32 hours
• EDGE completely idle: 5mA = 9.5 days
• Airplane mode idle: 2mA = 24 days

Mobile Application Design and Development Summer 2011

Northeastern University 41

Eating the battery life

• E.g., Waking up in the background when
the phone would otherwise be sleeping
– App wakes up every 10 minutes to update
– Takes about 8 seconds to update, 350mA

• Cost during a given hour:
– 3600 seconds * 5mA = 5mAh resting
– 6 times * 8 sec * 350 mA = 4.6mAh updating

• Just one app waking up can trigger
cascade

Mobile Application Design and Development Summer 2011

Northeastern University 42

Eating the battery life

• Bulk data transfer such as a 6MB song:
– EDGE (90kbps): 300mA * 9.1 min = 45 mAh
– 3G (300kbps): 210mA * 2.7 min = 9.5 mAh
– WiFi (1Mbps): 330mA * 48 sec = 4.4 mAh

• Moving between cells/networks
– Radio ramps up to associate with new cell
– BroadcastIntents fired across system

• Parsing textual data, regex without JIT

Mobile Application Design and Development Summer 2011

Northeastern University 43

Use gzip library for text transfers

Mobile Application Design and Development Summer 2011

Northeastern University 44

Eating the battery life

• Use coarse network location, it's much
cheaper
– GPS: 25 seconds * 140mA = 1mAh
– Network: 2 seconds * 180mA = 0.1mAh

• 1.5 uses AGPS when network available

Mobile Application Design and Development Summer 2011

Northeastern University 45

Eating the battery life

• GPS time-to-fix varies wildly based on
environment, and desired accuracy, and
might outright fail
– Just like wake-locks, location updates can

continue after onPause(), so make sure to
unregister

– If all apps unregister correctly, user can leave
GPS enabled in Settings

Mobile Application Design and Development Summer 2011

Northeastern University 46

Eating the battery life

• Accelerometer/magnetic sensors
– Normal: 10mA (used for orientation detection)
– UI: 15mA (about 1 per second)
– Game: 80mA
– Fastest: 90mA

Mobile Application Design and Development Summer 2011

Northeastern University 47

Service

• Services should be short-lived; these aren't
daemons
– Each process costs 2MB and risks being

killed/restarted as foreground apps need
memory

– Otherwise, keep memory usage low so you're
not the first target

