Mobile Application (Design and) Development

12th class

Prof. Stephen Intille s.intille@neu.edu

Today

- Q&A
- Project idea observations
- Acceleration data
- Mention of other sensors
- Web connection
- Design paper presentations
 - Case Studies
 Presenter: Rahul Trivedi
 - Case Studies
 Ben Johnson
 - The Future of Persuasion and Persuasive Games Robert Steinbach

Schedule

- Tomorrow: Project presentations (start)
 - Please be on time
 - Fast paced
- Thu: Finish project presentations
 - Start SQLite
- Sunday: Programming assignment 4 due
 "Boggle Health Game"

Mobile Application Design and Development

Q&A

- Most teams: be much more clear about how it works. Too many missing screens, etc.
- If people don't do it already, do they really *need* to do it? Think like a business person: where do they feel pain?

 Why is what you propose likely to be addictive? Describe what is fun and WHY. What will pull in the skeptics? Think about the theory behind it? E.g., does it have cleverly balanced reward/challenge as all good games do? Does it do that at multiple levels? Does it lead people into the cognitive model? (See the Angry Birds article for inspiration)

 Some projects are promising way too much complexity in terms of databases and data entry. Think smaller but more clever. You are not going to do the sameold, same-old food tracking better. Or, if you think you are, you need to demonstrate why you have a breakthrough in simplicity!

- Not nearly enough detail in may paper prototypes
- Game will make it "fun and exciting." Why? Show that what you are doing has the flavor of other games that are already known to be hugely popular.

 Do people actually CARE about the problem you are solving? Or is it just that they SHOULD care? If only the latter, you are fighting an uphill battle unless you have a something that will make the app have an engaging pull.

- Error in the measurement: watch out! Impacts your apps credibility. You need to assume error and deal with it, not assume perfect measurement or behavior. If user figures out your app is not perfect, why should they take time to give it info?
- Do I have to remember to use it? If I forget, can I use it afterwards?

 Can I correct information if I think the app was not correct (or better, is the design forgiving of this and doesn't make me mad if it misses something)

- Not much use of friends (or better, other users that user doesn't know) in clever ways. Think about if you can make the app more compelling by exploiting human creativity and ingenuity.
- Think about synchronous vs. asynchronous communication.

- I particularly like the apps that are measuring something in a new way ... that gives the app a sense of freshness vs potential competition and also may make it seem more unusual.
- Beware of reminding to do exercise ... remember that TIME IS THE MOST
 VALUABLE RESOURCE people have ... if you are asking their time, you are asking a great deal.

 Best, where possible, to wait until they do something and positively reward.
 Integrate into everyday life.

 "Friend" or "buddy" type applications ... what can do you do to make it unique/special? E.g., only one buddy? Clever way of getting buddies? Competition to get buddies? Some type of "secret" communication channels? BE CREATIVE! Think hard about how to make the app feel different than all others ... it's mostly NOT about programming. It's about design.

- Where is the POINT OF DECISION? (Example, food in the kitchen; doing exercises at the gym; watching a new television show)
- Beware of ideas that require practive action for what should be background monitoring.

- If you need art, where will you get it so the apps looks professional? (Suggest you find a friend who is in the arts/graphic design)
- Be sure to include a mechanism in your app where you users can provide you with feedback about how to improve it. This is a GOLD MINE for you. It is also a feature that users greatly appreciate if they think you, the developer, are listening to them. Don't squander the opportunity.

- Sensor noise. Accept it. Embrace it. Design around it.
- Animated agents are very challenging to make well. Anthropomorphization is tricky territory to be in and confuses many users. Is it a computer? Is it supposed to be real? Why isn't it smarter? Can you accomplish what you want without requiring Al?

- What about cheating? Some apps may fail because users will be distrustful of other people cheating.
- Graphs are a reasonable amount of work to implement. They seem like a good idea at first, but they aren't particularly fun. Can you make the graphs fun in some way? What is the PURPOSE of the graphs?

 Think through all the types of rewards you could offer: Badges? Avenues of communication? You may not use money as a reward because it will not scale to large numbers of people (unless you can figure out a way to do that without spending your own money)

 Many apps do not clearly show how someone would get started using it ... this should come out if you are doing paper prototyping. Think very hard about the learning curve for the cognitive model and how to increase cognitive complexity gradually. Good games do this.

 Databases ... some are requiring them but will you have what you need? If the DB you need is not available (ask me if I'm aware of something) or would require a lot of work to create, move on to a new idea.

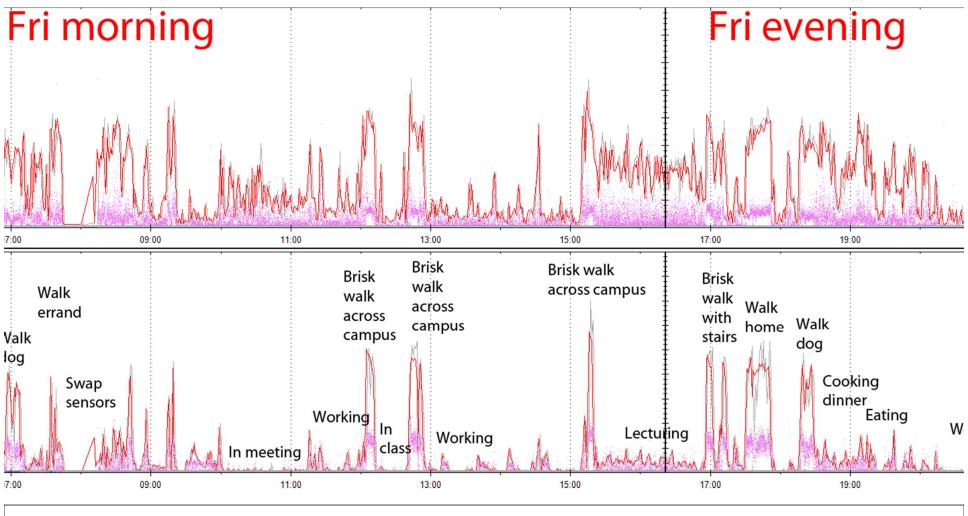
 Said this before but want to reemphasize: don't just say your idea is better than the competition because someone is playing a game. Saying that you have a "fun and addictive game format" doesn't tell the user anything. Many games are junk. What designs of the game make it good, and you should be able to justify that via comparison with games that you know are good. (DropWords example)

- Think carefully about what burden you are putting on the user based on how they must carry the phone. Is what you are asking them to change reasonable given what your app actually gives them in terms of benefits?
- Think carefully about the interaction/interruption burden your app imposes. Is it reasonable?

- Tracking behavior is not fun. So, if you are asking people to do tracking, does it (1) lead to something fun? (2) save time? (3) lead to more interesting communication? (4) ????
- Unless your app really is only designed for one gender, be careful in your descriptions that you are not excluding 50% of the Market! Some have examples that are quiet gender specific.

 I am putting heavy weight on creativity and use of the special capabilities of mobile devices and simplicity and robustness! Why?

- I am putting heavy weight on creativity and use of the special capabilities of mobile devices and simplicity and robustness! Why?
- I want to see more detail in paper prototypes and more evidence that teams are really doing it! Generally it comes through loud and clear if you are serious about it.


A bit about accelerometer data

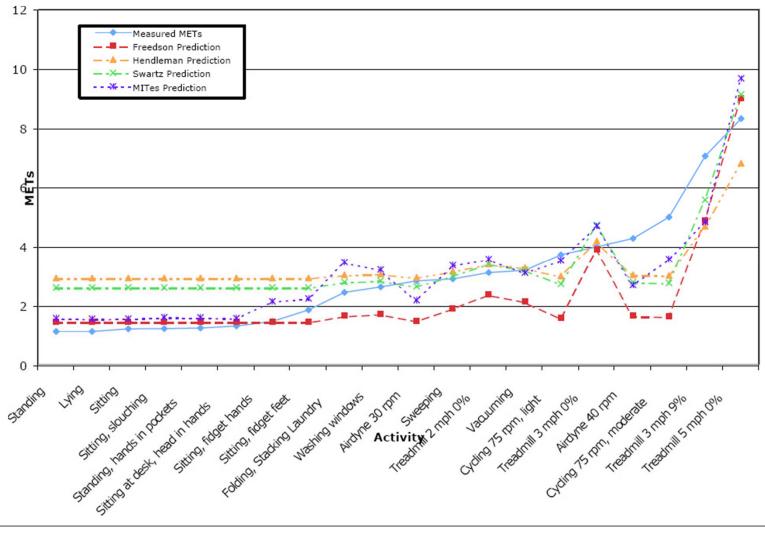
- Lateral (x)
- Longitudinal (y)
- Vertical (z) (out of screen)

Using accelerometer data

- Computing "counts"
 - Area under the curve
 - Filtering out DC component of signal
 - Filtering out high frequency spikes
 - "Epoch"

Counts

Northeastern University

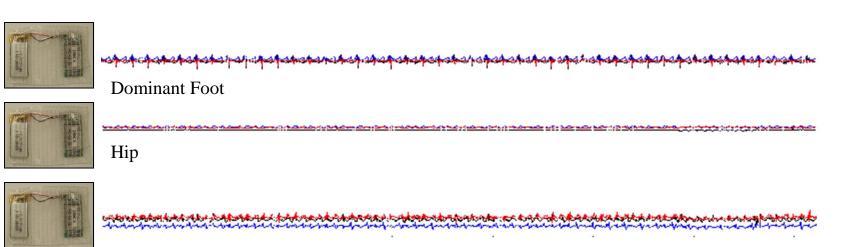

Using accelerometer data

- Computing "counts"
- Computing energy expenditure

Mobile Application Design and Development

MITes v. Actigraphs EEE (sing

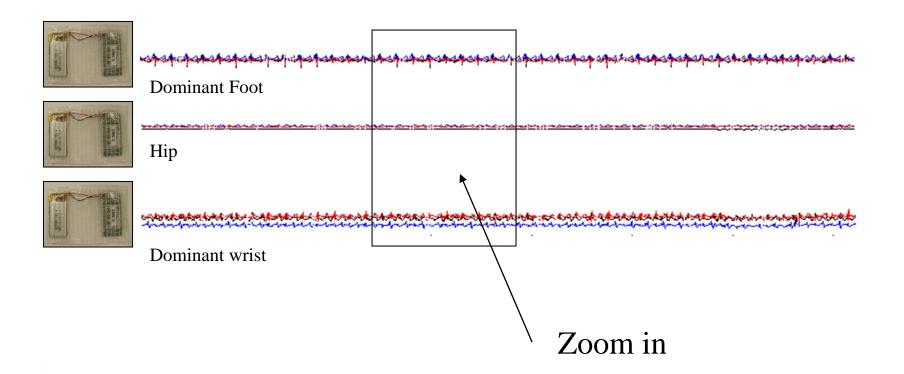
(single linear regression)

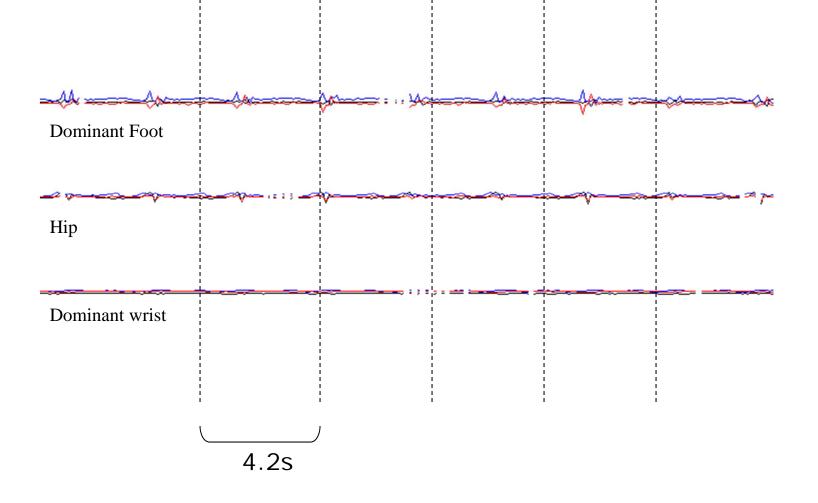

Using accelerometer data

- Computing "counts"
- Computing energy expenditure
- Computing activity type
 - Filter raw data (Note: ALL sensors are noisy!)
 - Compute features
 - Match features to models
 - Models created from training data

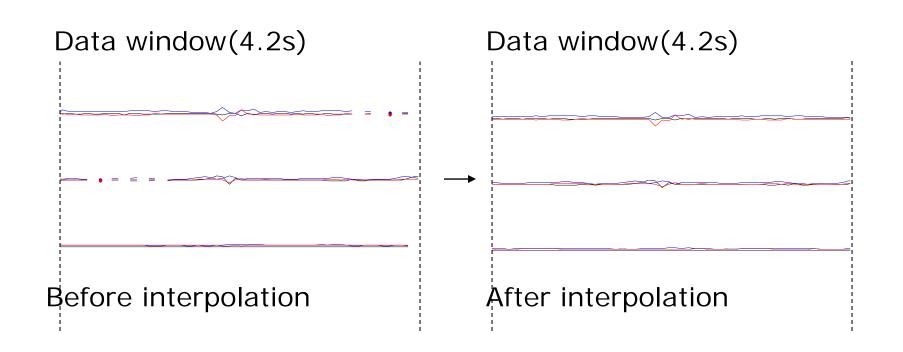
Northeastern University

Mobile Application Design and Development

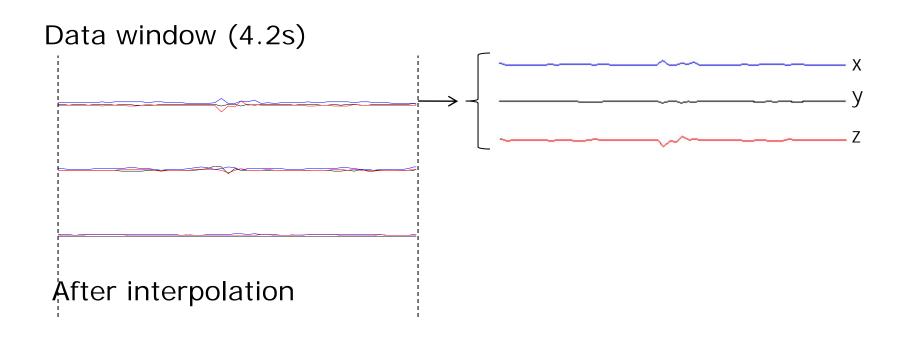

Walking treadmill 4mph 0%


Dominant wrist

Mobile Application Design and Development


Walking treadmill 4mph 0%

Segmentation: Sliding windows



Interpolation: Cubic splines

Mobile Application Design and Development

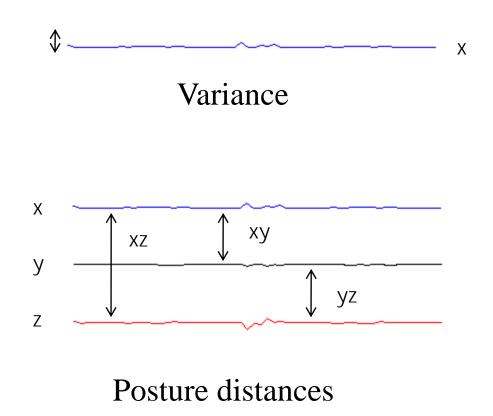
Signal processing: Filtering

Mobile Application Design and Development

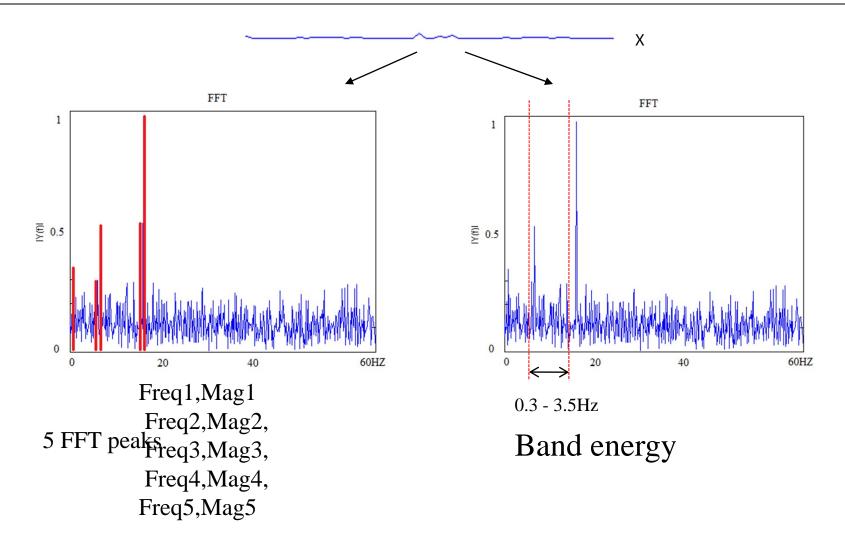
Signal processing: Filtering

Northeastern University

Feature computation

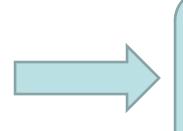

For each axis, compute features such as...

Signal variability Variance Posture information Posture distances Activity intensity Energy between 0.3-3.5Hz Frequency/periodicity of motion Top 5 peaks of the FFT


Notheastern University is patterns of limb motions 40

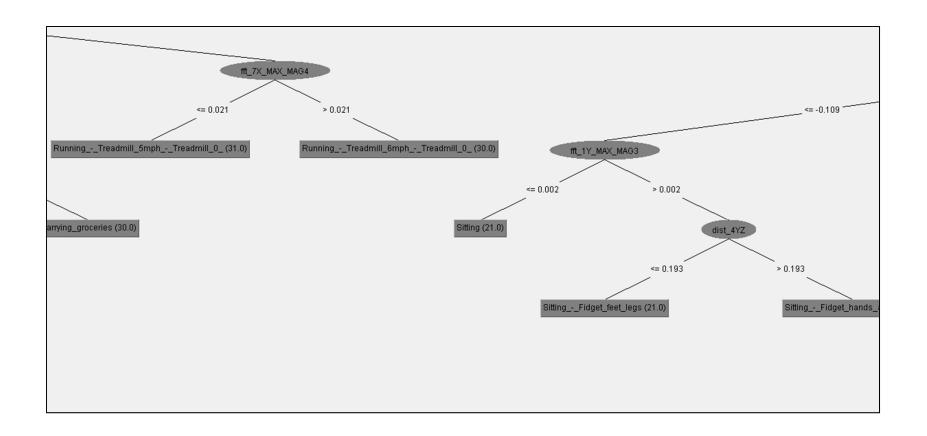
Mobile Application Design and Development

Time domain features


Frequency domain features

Northeastern University

Training of classifier

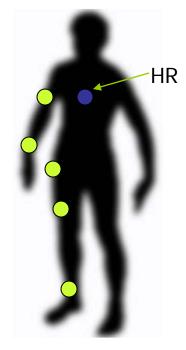

ACVar (9) ACFFTPeaks (90) ACBandEnergy (9) DCPostureDist (9)

C4.5 Decision Tree Classifier

[val_1 val_2 ... val_117] Vector size: 117

C4.5 decision tree

Fast to run, works reasonably well
Modest explanatory power (used in ongoing


Nothersity

Mobile Application Design and Development Experiments: A superset of

sensors

- Wrists (1)
- Forearm (1)
- Thigh (1)
- Waist (1)
- Ankle (1)
 - Dolar UD chact strap

Summer 2011

Target activities (51)

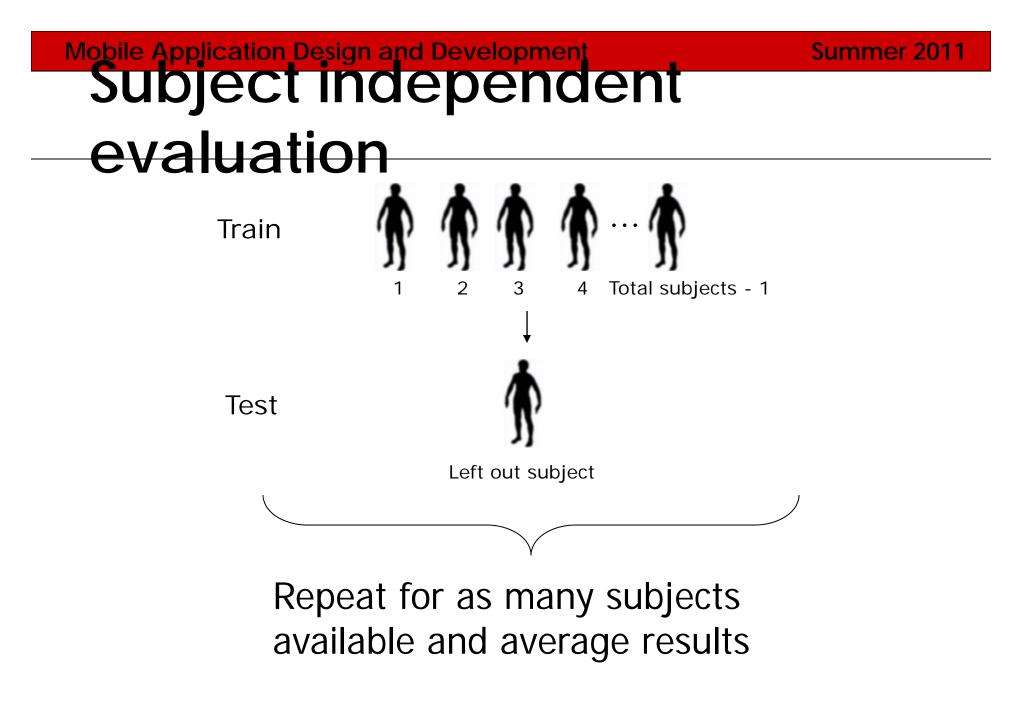
Туре	Intensity
Lying down	Not applicable
Standing	Not applicable
Sitting	Not applicable
Sitting	Fidget feet legs
Sitting	Fidget hands arms
Kneeling	Not applicable
Walking	Treadmill 2mph 0% grade
Walking	Treadmill 3mph 0% grade
Walking	Treadmill 3mph at 3% grade
Walking	Treadmill 3mph at 6% grade
Walking	Treadmill 3mph at 9% grade
Running	Treadmill 4mph at 0% grade

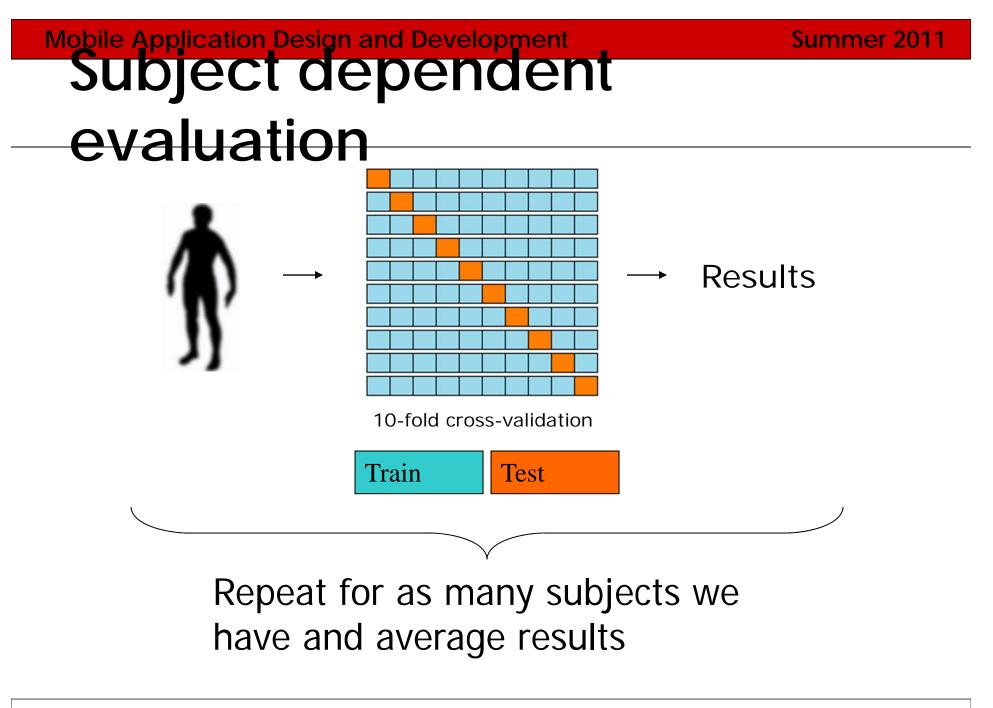
Туре	Intensity
Running	Treadmill 5mph at 0% grade
Running	Treadmill 6mph at 0% grade
Stairs Ascend stairs	Not applicable
Stairs Descend stairs	Not applicable
Cycling	80 rpm, light, moderate, hard
Cycling	60 rpm, light
Cycling	100 rpm, light
Rowing	30 spm, light, moderate, hard
Bicep curls	Light, moderate, hard
Bench weight lifting	Light, moderate, hard
Sit-ups	Not applicable
Crunches	Not applicable

Gymnasium activity subset 3-4 minutes of example data per activity

Target activities (51)

Туре	Intensity
Lying down	Not applicable
Standing	Not applicable
Sitting	Not applicable
Sitting	Fidget feet legs
Sitting	Fidget hands arms
Kneeling	Not applicable
Walking	Treadmill 2mph 0% grade
Walking	Treadmill 3mph 0% grade
Walking	Treadmill 3mph at 3% grade
Walking	Treadmill 3mph at 6% grade
Walking	Treadmill 3mph at 9% grade
Running	Treadmill 4mph at 0% grade


Туре	Intensity
Running	Treadmill 5mph at 0% grade
Running	Treadmill 6mph at 0% grade
Stairs Ascend stairs	Not applicable
Stairs Descend stairs	Not applicable
Cycling	80 rpm, light, moderate, hard
Cycling	60 rpm, light
Cycling	100 rpm, light
Rowing	30 spm, light, moderate, hard
Bicep curls	Light, moderate, hard
Bench weight lifting	Light, moderate, hard
Sit-ups	Not applicable
Crunches	Not applicable


Gymnasium activity subset 3-4 minutes of example data per activity

Target activities (51)

Туре	Туре
Carrying groceries	Vacuuming
Doing dishes	Walking around block
Gardening	Washing windows
Ironing	Watching TV
Making the bed	Weeding
Mopping	Wiping/Dusting
Playing videogames	Writing
Scrubbing a surface	Taking out trash
Stacking groceries	
Sweeping	
Typing	

Household activities subset

Mobile Application Design and Development Summer 2011 Performance: 51 activities, 20 participants

Evaluation	Accuracy	ТР	FP			
Method	(%)	Range (%)	Range (%)			
Subject dependent	87.9	80 - 93	0.1 – 0.2			
Subject independent	50.6	34 – 77	0.5 – 1.3			

Random guess: 1.96%

Mobile Application Design and Development Summer 2011 Performance: 51 activities, 20 participants

Evaluation	Accuracy	ТР	FP				
Method	(%)	Range (%)	Range (%)				
Subject dependent	87.9	80 - 93	0.1 – 0.2				
Subject independent	50.6	34 – 77	0.5 – 1.3				

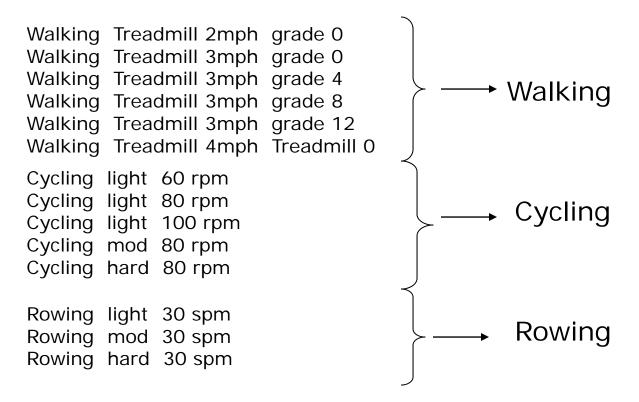
Random guess: 1.96%

Performance: 51 activities

- Best: Postures and exercises
- Weakest: household and resistance activities
- Most confusion:
 - Intensity levels
 - Household
 - Activities involving upper body motion

Confusion matrix

CONF	CONFUSION MATRIX SUBJECT DEPENDENT INVARIANT FEATURES																													
А	В	С	D	Е	F	G	н	I	J	К	L	М	Ν	0	Р	Q	R	S	т	U	v	W	х	Y	Z	[\]	^	< Classified as
266	0	1	0	0	0	0	0	0	0	0	6	0	7	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	Α
1	259	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	7	0	0	0	0	0	0	1	В
0	0	228	1	0	0	1	0	2	0	0	1	3	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	С
1	0	0	234	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	D
0	0	0	0	523	2	4	3	27	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	E
0	0	0	0	0	586	1	8	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	F
0	0	0	0	1	0	595	2	1	0	0	1	0	0	0	1	0	0	0	3	1	0	0	0	0	0	0	0	0	0	G
0	0	0	0	13	0	6	1267	54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	н
0	0	0	0	27	3	0	52	533	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I
0	0	0	1	0	0	0	0	0	515	Ø	0	Ø	0	0	0	0	0	1	1	3	0	0	0	0	0	0	0	0	1	J
0	0	1	0	0	0	0	0	0	0	688	6	2	1	0	0	0	0	0	0	0	4	3	0	0	0	0	0	0	0	К
1	0	1	0	0	0	1	0	2	0	7	573	58	13	0	0	0	0	3	0	0	4	6	2	2	0	0	0	0	0	L
1	1	4	0	1	1	0	0	0	0	3	56	574	15	1	0	1	0	0	0	0	2	2	0	1	0	0	0	2	0	М
1	0	3	0	1	0	0	0	0	0	1	14	19	623	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ν
0	0	0	1	0	0	0	0	1	0	2	1	1	1	470	10	40	1	0	0	0	0	0	0	2	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	10	521	35	0	0	0	0	0	0	0	0	0	0	0	0	0	Р
0	0	0	1	0	0	0	0	0	1	0	0	1	0	50	26	449	0	0	0	0	0	0	0	0	0	0	0	0	0	Q
0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	593	0	0	0	2	1	0	0	0	0	0	0	1	R
0	0	1	0	0	1	0	0	0	2	1	0	0	0	0	0	2	0	601	5	4	0	0	0	1	0	0	0	1	0	S
0	0	0	2	0	0	0	0	0	0	0	0	0	5	1	0	0	0	4	586	7	0	0	0	0	0	0	0	0	0	Т
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	4	3	612	0	1	3	0	0	0	0	0	0	U
0	3	1	0	0	0	0	0	0	0	3	4	1	0	0	0	0	0	0	0	0	545	29	0	1	1	0	0	0	0	V
0	3	0	0	0	0	0	0	0	0	4	5	0	1	0	0	0	0	0	0	0	33	482	0	0	0	0	1	0	1	W
0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	655	1	0	0	0	0	0	х
0	0	0	0	0	0	0	0	0	0	2	0	1	0	0	0	0	2	0	0	0	1	0	2	626	6	2	2	1	5	Y
0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	600	3	43	6	1	Z
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2	2	0	4	0	587	7	50	0	[
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	2	36	5	563	63	1	\
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	7	54	51		1]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	1	0	1	1	656	^


Cycling

Moving weight

Rowing

Walking

Mobile Application Design and Development Grouping intensities, performance improves

Activities to recognize	Total	Activities Included
All	51	All 51 activities
All with no intensities	31	No intensity levels for
		Bicep curls, bench weight lifting,
		walking, running, cycling, rowing,
		and sitting
Postures, ambulation and	11	Lying down, sitting, standing,
two MET intensity		kneeling, walking (2, 3mph),
categories		running (4,5, and 6 mph),
		moderate, vigorous
Postures and ambulation	8	Lying down, sitting, standing,
with no intensity		kneeling, walking, running,
		ascending stairs, descending stairs
Postures	4	Lying down, sitting, standing,
		kneeling

		Subject Dependent	Subject Independent
Activities to recognize	Random Guess (%)	Total Accuracy (%)	Total Accuracy (%)
All (51)	1.9%	87.9	50.6
All with no intensities (31)	3.2%	91.4	72.0
Postures, ambulation and two MET intensity categories (11)	9%	96.5	81.3
Postures and Ambulation with no intensity (8)	12.5%	98.4	92.9
Postures (4)	25%	99.3	98.0

		Subject Dependent	Subject Independent
Activities to recognize	Random Guess (%)	Total Accuracy (%)	Total Accuracy (%)
All (51)	1.9%	87.9	50.6
All with no intensities (31)	3.2%	91.4	72.0
Postures, ambulation and two MET intensity categories (11)	9%	96.5	81.3
Postures and Ambulation with no intensity (8)	12.5%	98.4	92.9
Postures (4)	25%	99.3	98.0

If activity intensities are merged, subject independent accuracy increases to 72%

		Subject Dependent	Subject Independent
Activities to recognize	Random Guess	Total Accuracy	Total Accuracy
	(%)	(%)	(%)
All (51)	1.9%	87.9	50.6
All with no intensities	3.2%	91.4	72.0
(31)			
Postures, ambulation	9%	96.5	81.3
and two MET intensity			
categories (11)			
Postures and	12.5%	98.4	92.9
Ambulation with no			
intensity (8)			
Postures (4)	25%	99.3	98.0

		Subject Dependent	Subject Independent
Activities to recognize	Random Guess	Total Accuracy	Total Accuracy
	(%)	(%)	(%)
All (51)	1.9%	87.9	50.6
All with no intensities	3.2%	91.4	72.0
(31)			
Postures, ambulation	9%	96.5	81.3
and two MET intensity			
categories (11)			
Postures and	12.5%	98.4	92.9
Ambulation with no			
intensity (8)			
Postures (4)	25%	99.3	98.0

		Subject Dependent	Subject Independent
Activities to recognize	Random Guess	Total Accuracy	Total Accuracy
	(%)	(%)	(%)
All (51)	1.9%	87.9	50.6
All with no intensities	3.2%	91.4	72.0
(31)			
Postures, ambulation	9%	96.5	81.3
and two MET intensity			
categories (11)			
Postures and	12.5%	98.4	92.9
Ambulation with no			
intensity (8)			
Postures (4)	25%	99.3	98.0

Sensor Combination	Subject Dependent Accuracy
All sensors	87.9 ± 2.0
Hip + DWrist + DFoot	-1.8 %
Hip + DFoot	-3.5 %
Hip + DWrist	-4.9 %
DWrist + DThigh	-7.2 %
DWrist + DFoot	-7.7 %
Hip	-8.4 %
DFoot	-14.9 %
DThigh	-15.1 %
DUpperArm	-15.4 %
DWrist	-19.6 %

Sensor Combination	Subject Independent Accuracy
All sensors	50.6 ± 5.2
Hip + DWrist + DFoot	-7.9 %
DWrist + DThigh	-8.1 %
DWrist + DFoot	-13.0 %
Hip + DWrist	-15.6 %
Hip + DFoot	-18.9 %
DUpperArm	-26.5 %
DWrist	-27.7 %
Hip	-28.5 %
DFoot	-34.8 %
DThigh	-42.7 %

Sensor Combination	Subject Dependent Accuracy
All sensors	87.9 ± 2.0
Hip + DWrist + DFoot	-1.8 %
Hip + DFoot	-3.5 %
Hip + DWrist	-4.9 %
DWrist + DThigh	-7.2 %
DWrist + DFoot	-7.7 %
Hip	-8.4 %
DFoot	-14.9 %
DThigh	-15.1 %
DUpperArm	-15.4 %
DWrist	-19.6 %

Sensor Combination	Subject Independent Accuracy
All sensors	50.6 ± 5.2
Hip + DWrist + DFoot	-7.9 %
DWrist + DThigh	-8.1 %
DWrist + DFoot	-13.0 %
Hip + DWrist	-15.6 %
Hip + DFoot	-18.9 %
DUpperArm	-26.5 %
DWrist	-27.7 %
Hip	-28.5 %
DFoot	-34.8 %
DThigh	-42.7 %

Sensor Combination	Subject Dependent Accuracy
All sensors	87.9 ± 2.0
Hip + DWrist + DFoot	-1.8 %
Hip + DFoot	-3.5 %
Hip + DWrist	-4.9 %
DWrist + DThigh	-7.2 %
DWrist + DFoot	-7.7 %
Hip	-8.4 %
DFoot	-14.9 %
DThigh	-15.1 %
DUpperArm	-15.4 %
DWrist	-19.6 %

Sensor Combination	Subject Independent Accuracy
All sensors	50.6 ± 5.2
Hip + DWrist + DFoot	-7.9 %
DWrist + DThigh	-8.1 %
DWrist + DFoot	-13.0 %
Hip + DWrist	-15.6 %
Hip + DFoot	-18.9 %
DUpperArm	26.5 %
DWrist	-27.7 %
Hip	-28.5 %
DFoot	-34.8 %
DThigh	-42.7 %

Sensor Combination	Subject Dependent Accuracy
All sensors	87.9 ± 2.0
Hip + DWrist + DFoot	-1.8 %
Hip + DFoot	-3.5 %
Hip + DWrist	-4.9 %
DWrist + DThigh	-7.2 %
DWrist + DFoot	-7.7 %
Hip	-8.4 %
DFoot	-14.9 %
DThigh	-15.1 %
DUpperArm	-15.4 %
DWrist	-19.6 %

Sensor Combination	Subject Independent Accuracy
All sensors	50.6 ± 5.2
Hip + DWrist + DFoot	-7.9 %
DWrist + DThigh	-8.1 %
DWrist + DFoot	-13.0 %
Hip + DWrist	-15.6 %
Hip + DFoot	-18.9 %
DUpperArm	26.5 %
DWrist	-27.7 %
Hip	-28.5 %
DFoot	-34.8 %
DThigh	-42.7 %

Matches intuition: capture upper & lower body motion

Listener for changes (accel)

```
public void setupSensorListener() {
 SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
 int sensorType = Sensor.TYPE ACCELEROMETER;
 sm.registerListener(mySensorEventListener,
            sm.getDefaultSensor(sensorType),
            SensorManager.SENSOR DELAY NORMAL);
final SensorEventListener mySensorEventListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
  if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {
   float xAxis_lateralA = sensorEvent.values[0];
   float yAxis_longitudinalA = sensorEvent.values[1];
   float zAxis verticalA = sensorEvent.values[2];
   // TODO apply the acceleration changes to your application.
```

Orientation

```
field sensors
float[] accelerometerValues;
float[] magneticFieldValues;
final SensorEventListener myAccelerometerListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
  if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER)
   accelerometerValues = sensorEvent.values;
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};
final SensorEventListener myMagneticFieldListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
  if (sensorEvent.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)
   magneticFieldValues = sensorEvent.values;
 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};
```

Orientation

```
public void connectListeners() {
    SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
    Sensor aSensor = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
    Sensor mfSensor = sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
```

sm.registerListener(myAccelerometerListener, aSensor,

SensorManager.SENSOR_DELAY_UI);

sm.registerListener(myMagneticFieldListener, mfSensor, SensorManager.SENSOR_DELAY_UI);

Grabbing data from Internet

- WebKit
- Integration with javascript
- Standard network services

• Take a look at example code from text...