
Mobile Application Design and Development Summer 2011

Northeastern University 1

Mobile Application (Design and)
Development

10th class

Prof. Stephen Intille
s.intille@neu.edu

Mobile Application Design and Development Summer 2011

Northeastern University 2

Q&A

Mobile Application Design and Development Summer 2011

Northeastern University 3

Today
• Overview of BroadcastReceivers, Services

and Wakelock
• Demo
• Fahd’s tips and tricks

– A few things Fahd thinks he would have liked
to have known when just starting out with
Android

• Design paper presentation
– Simple and Usable Displace Section

Presenter: Sapna Krishnan

Mobile Application Design and Development Summer 2011

Northeastern University 4

Schedule
• Tomorrow: design assignment 3 due

– Preliminary project description and paper
prototype

– Make sure you include enough detail so it will
be clear to someone who hasn’t seen it how it
works

• Thursday: location and sensing
• Sunday: Programming assignment 3 due

Mobile Application Design and Development Summer 2011

Northeastern University 5

Building blocks of an app

• Activities
• Services
• Content providers
• Intents
• Broadcast receivers
• Widgets
• Notifications

Mobile Application Design and Development Summer 2011

Northeastern University 6

Building blocks of an app

• In theory, by decoupling dependencies
between app components you can share
and interchange individual pieces

• In practice, may be a little tricky to do

Mobile Application Design and Development Summer 2011

Northeastern University 7

BroadcastReceiver

• Component that responds to system-wide
broadcast announcements.

• Example system broadcasts: screen has
turned off, the battery is low, user is
present using phone, or a picture was
captured.

Mobile Application Design and Development Summer 2011

Northeastern University 8

BroadcastReceiver

• Applications can initiate broadcasts—e.g.,
to let other applications know that some
data has been downloaded to the device
and is available for them to use.

• Don’t display a UI, but can create a status
bar notification to alert the user when a
broadcast event occurs.

Mobile Application Design and Development Summer 2011

Northeastern University 9

BroadcastReceiver

• Usually, a broadcast receiver is just a
"gateway" to other components and is
intended to do a very minimal amount of
work. For instance, it might initiate a
service to perform some work based on
the event.
– Important: you must complete tasks in a

BroadcastReceiver in <10s. If you have a task
that will take longer, you must start a new
thread to avoid app assassin OS.

Mobile Application Design and Development Summer 2011

Northeastern University 10

Services

• Handles operation and functionality
invisibly

• Higher priority than inactive Activities, so
less likely to be killed

• If they are killed, they can be configured
to re-run automatically (when resources
available)

Mobile Application Design and Development Summer 2011

Northeastern University 11

Services

• You can use services to make your app
run and respond to events when not in
active use

• No dedicated UI, but they execute in the
main thread of the application’s process.
This means they cannot cause processing
lags.
– CPU intensive tasks must be offloaded to

background threads using Thread or
AsyncTask

Mobile Application Design and Development Summer 2011

Northeastern University 12

Services

• Threads can use Toasts and Notifications
to send messages to the user

• Alarms can be used to fire Intents at set
times (by OS, not your app). These can
start services, open Activities, or broadcast
Intents

Mobile Application Design and Development Summer 2011

Northeastern University 13

Tracking Stephen’s activity

• You will use Broadcast receivers to track
Stephen’s activity in Prog. Assignment 3
– List of Intents

• http://developer.android.com/reference/android/
content/Intent.html

– E.g.,
• intentFilter.addAction(Intent.ACTION_HEADSET_PLUG);
• intentFilter.addAction(Intent.ACTION_MEDIA_BAD_REMOVAL);
• intentFilter.addAction(Intent.ACTION_MEDIA_REMOVED);
• intentFilter.addAction(Intent.ACTION_NEW_OUTGOING_CALL);
• intentFilter.addAction(Intent.ACTION_PACKAGE_ADDED);

–

Mobile Application Design and Development Summer 2011

Northeastern University 14

Tracking Stephen’s activity

• Intent tip:
– Some Broadcast Intents don’t work as

advertised in the docs
– Some Intents will only work if you add them

via code, not via XML. You will not get an
error if you define it in XML. It just won’t work
(e.g., Intent.ACTION_TIME_TICK is definitely like
this)

Mobile Application Design and Development Summer 2011

Northeastern University 15

Services

• The only reason Android will stop a service
is to provide additional resources to
foreground Activity
– It is possible to increase the status of an

Activity (such as music player) to a
foreground activity

• Examples from OS: Location Manager,
Media Controller, Notification Manager

Mobile Application Design and Development Summer 2011

Northeastern University 16

Services

• The only reason Android will stop a service
is to provide additional resources to
foreground Activity
– It is possible to increase the status of an

Activity (such as music player) to a
foreground activity

• Examples from OS: Location Manager,
Media Controller, Notification Manager

Mobile Application Design and Development Summer 2011

Northeastern University 17

Services

• The only reason Android will stop a service
is to provide additional resources to
foreground Activity
– It is possible to increase the status of an

Activity (such as music player) to a
foreground activity

• Examples from OS: Location Manager,
Media Controller, Notification Manager

Mobile Application Design and Development Summer 2011

Northeastern University 18

Creating a service
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class MyService extends Service {

@Override
public void onCreate() {
// TODO: Actions to perform when service is created.

}

@Override
public IBinder onBind(Intent intent) {
// TODO: Replace with service binding implementation.
return null;

}

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
// TODO Launch a background thread to do processing.
return Service.START_STICKY;

}
}

Mobile Application Design and Development Summer 2011

Northeastern University 19

onStartCommand

• Called whenever the Service is started
with call to startService
– So beware: may be executed several times in

Service’s lifetime!
– Controls how system will respond if Service

restarted (START_STICKY)
– Run from main GUI thread so standard pattern

is to create a new Thread from
onStartCommand to perform processing and
stop Service when complete

Mobile Application Design and Development Summer 2011

Northeastern University 20

Stickyness
• START_STICKY

– onStartCommand called anytime service
restarts

• START_NOT_STICKY
– For service started to execute specific

action/command
– Use stopSelf to terminate service when

command complete
• START_RECEIVER_INTENT

– Combines both above

Mobile Application Design and Development Summer 2011

Northeastern University 21

Stickyness
• You can use the parameter passed to

startService to determine if the service is a
system-based restart
– Null

• Initial call
– START_FLAG_REDILIVERY

• OS terminated the service before it was stopped
by stopSelf

– START_FLAG_RETRY
• Service restarted after an abnormal termination

when service was set to START_STICKY

Mobile Application Design and Development Summer 2011

Northeastern University 22

Determining start condition
@Override
public int onStartCommand(Intent intent, int flags, int startId) {
if ((flags & START_FLAG_RETRY) == 0) {
// TODO If it’s a restart, do something.

}
else {
// TODO Alternative background process.

}
return Service.START_STICKY;

}

Mobile Application Design and Development Summer 2011

Northeastern University 23

Manifest
• Always have to register services

• Also have to register Broadcast Recievers

• Permissions must be set correctly

Mobile Application Design and Development Summer 2011

Northeastern University 24

Starting a Service
• Call startService

(To use this example, would need to include a MY_ACTION
constant in MyService class and use an Intent Filter to register the
Service as a provider of MY_ACTION)

// Implicitly start a Service
Intent myIntent = new Intent(MyService.ORDER_PIZZA);
myIntent.putExtra("TOPPING", "Margherita");
startService(myIntent);

// Explicitly start a Service
startService(new Intent(this, MyService.class));

Mobile Application Design and Development Summer 2011

Northeastern University 25

Stopping a Service
• Call stopService

ComponentName service = startService(new Intent(this, BaseballWatch.class));
// Stop a service using the service name.
stopService(new Intent(this, service.getClass()));
// Stop a service explicitly.
try {
Class serviceClass = Class.forName(service.getClassName());
stopService(new Intent(this, serviceClass));

} catch (ClassNotFoundException e) {}

Mobile Application Design and Development Summer 2011

Northeastern University 26

Binding Activities to Services
• Activity maintains reference to a Service
• Activity can make calls on the Service just

as any other instantiated class
• To support this, implement onBind for the

Service
private final IBinder binder = new MyBinder();

@Override
public IBinder onBind(Intent intent) {
return binder;

}

public class MyBinder extends Binder {
MyService getService() {
return MyService.this;

}
}

Mobile Application Design and Development Summer 2011

Northeastern University 27

Binding Activities to Services
private MyService serviceBinder; // Reference to the service

// Handles the connection between the service and activity
private ServiceConnection mConnection = new ServiceConnection() {
public void onServiceConnected(ComponentName className, IBinder service) {
// Called when the connection is made.
serviceBinder = ((MyService.MyBinder)service).getService();

}

public void onServiceDisconnected(ComponentName className) {
// Received when the service unexpectedly disconnects.
serviceBinder = null;

}
};

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

// Bind to the service
Intent bindIntent = new Intent(MyActivity.this, MyService.class);
bindService(bindIntent, mConnection, Context.BIND_AUTO_CREATE);

}

Mobile Application Design and Development Summer 2011

Northeastern University 28

Binding Activities to Services

• Once Service is bound, all public methods
and properties are available through the
serviceBinder object obtained from the
onServiceConnected handler

Mobile Application Design and Development Summer 2011

Northeastern University 29

Background threads

• To make app responsive, move all time-
consuming operations off main app
thread to child thread. Very important!

• Two options:
– AsyncTask
– Write own Threads and Handler class

Mobile Application Design and Development Summer 2011

Northeastern University 30

AsyncTask

• To make app responsive, move all time-
consuming operations off main app
thread to child thread. Very important!
(You have 10s worst case before app
killed ... Don’t even want to be close)

• Two options:
– AsyncTask
– Write own Threads and Handler class

Mobile Application Design and Development Summer 2011

Northeastern University 31

AsyncTask

• Simple, convenient mechanism for moving
time-consuming operations to
background thread

• Convenience of event handlers synched
with GUI so you can update GUI on
progress of thread computation

• AsyncTask handles thread creation,
management, and synchronization

Mobile Application Design and Development Summer 2011

Northeastern University 32

Creating AsyncTask
private class MyAsyncTask extends AsyncTask<String, Integer, Integer> {
@Override
protected void onProgressUpdate(Integer... progress) { //Post interim updates to UI thread; access UI
// [... Update progress bar, Notification, or other UI element ...]

}

@Override
protected void onPostExecute(Integer... result) { //Run when doInBackground completed; access UI
// [... Report results via UI update, Dialog, or notification ...]

}

@Override
protected Integer doInBackground(String... parameter) { //Background thread. Do not interact with UI
int myProgress = 0;
// [... Perform background processing task, update myProgress ...]
PublishProgress(myProgress)
// [... Continue performing background processing task ...]

// Return the value to be passed to onPostExecute
return result;

}
}

Mobile Application Design and Development Summer 2011

Northeastern University 33

Important: power management

• Just because you have code in a
BroadcastReceiver or Service doesn’t
mean it will run if the phone goes into a
low-power state

• Common problem: create a Broadcast
receiver. Create a thread from within it to
run code....

Mobile Application Design and Development Summer 2011

Northeastern University 34

Important: power management

• All works fine when phone on and
plugged into computer during
development

• Fails under normal use because phone
shuts down quickly in power management
state

• Need to use a WakeLock!

Mobile Application Design and Development Summer 2011

Northeastern University 35

WakeLock

• Control the power state on device
(somewhat)

• Used to
– Keep the CPU running
– Prevent screen dimming or going off
– Prevent backlight from turning on

• Only use when necessary and release as
quickly as possible

Mobile Application Design and Development Summer 2011

Northeastern University 36

WakeLock

• If you start a service or broadcast an
Intent with the onReceive handler of a
BroadcastReceiver, it is posse the
WakeLock it holds will be released before
your service has started! To ensure the
service is executed you will need to put a
separate WakeLock policy in place.

Mobile Application Design and Development Summer 2011

Northeastern University 37

Creating a WakeLock

• PARTIAL_WAKE_LOCK keeps the CPU
running without the screen on

PowerManager pm = (PowerManager)getSystemService(Context.POWER_SERVICE);
WakeLock wakeLock = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,

"MyWakeLock");
wakeLock.acquire();
[... Do things requiring the CPU stay active ...]
wakeLock.release();

Mobile Application Design and Development Summer 2011

Northeastern University 38

WakefulIntentService

• Step through example

