
Table of Contents

Purifying Causal Atomicity . 1
Benjamin S. Lerner and Dan Grossman

1 Intuition and introduction . 1
2 Terminology & Notation . 2

2.1 Language . 2
2.2 Effect-system related definitions . 2
2.3 Petri-net related definitions . 4

3 Petri-fied Effects: Extending atomicity from syntax to dataflow 11
3.1 Refining the definition of causal atomicity . 12
3.2 Enumerating the operations of movers . 14
3.3 Sufficiency of our race detector . 16
3.4 Causal atomicity of sequenced statements . 20
3.5 Causal atomicity encompasses effect-based atomicity 23

4 Pure-Sml: distilling atomicity from impure sources 25
4.1 Language . 25
4.2 Effect-system related definitions . 25
4.3 Petri-net related definitions . 26

5 Checking causal atomicity with purity . 33
5.1 Defining pure-causal atomicity . 33
5.2 Causal purity . 36
5.3 Enumerating the operations of movers . 39
5.4 Sufficiency of our race detector . 39
5.5 Pure-causal atomicity of sequenced statements 45
5.6 Pure-causal atomicity encompasses effect-based abstract atomicity 48

6 Implementing the definition of pure-causal atomicity 50

2

Purifying Causal Atomicity

Benjamin S. Lerner and Dan Grossman

University of Washington
{blerner, djg}@cs.washington.edu

Abstract. Atomicity has been studied extensively as a tool for simplify-
ing a programmer’s understanding of concurrent code. The challenge of
atomicity analysis is to precisely find those code sections of interest that
do obey an atomicity discipline. In this paper, we present an extension
to Farzan and Madhusudan’s work on Causal Atomicity [1], adapting
the purity analysis proposed by Flanagan et. al. [2] to the Petri-net set-
ting. Our work is compositional—a different purity analysis could be
implemented with minimal extra effort, and similarly another atomicity
criterion could be checked without changing the purity translation—and
compatible—the analysis of any program that does not use purity anno-
tations is trivially equivalent to the original analysis.

1 Intuition and introduction

In [3], Flanagan and Qadeer introduce an effect system for tracking atomicity.
Their system is based on Lipton’s notion of movers, indicating in which directions
primitive operations can commute with those of other threads. This analysis is
sound, but is incomplete for several reasons. One of those weaknesses is addressed
in [2], where they add a purity analysis to their effect system. Intuitively, pure
blocks of code—those that do not modify the global state—leave behind no
evidence that they ran, and hence should not affect the perceived atomicity of
concurrent code. Their purity analysis performs effect masking over these blocks,
making them “disappear” to the atomicity effect system.

An entirely different approach is taken by [1], in which Farzan and Mad-
husudan model a program by a Petri net, a graph-based model of computation
in which control is modeled by a set of active places, and which flows through
transitions that are enabled only when all their prerequisite places are active
and that move control from their preconditions to their postconditions. Here,
they encode programs by various widgets in the graph, and define atomicity as
a reachability property of the graph. This model avoids the notion of movers en-
tirely, thereby avoiding the need to worry about reducibility. But it still suffers
from imprecision due to pure code.

In this paper, we adapt the purity analysis to the Petri-net formalism, show-
ing how to augment the precision of the analysis in a compositional way. We
show three things in this paper:

1. We show that the Petri-net model of causal atomicity is strictly more pow-
erful than the effect-system model of reducible atomicity. That is, every pro-

Syntax of Sml

P ∈ Prog ::= ·
∣∣ s||P

s ∈ Stmt ::= x := e
∣∣ s ; s

∣∣ if e s s ∣∣ while e s ∣∣ atomic s
∣∣ skip∣∣ acquire l

∣∣ release l
e ∈ Exp ::= c

∣∣x ∣∣ p(ē)
x ∈ V ar = UnstableV ar] StableV ar
c ∈ Const = Z

fn ∈ Prim = ArithPrim] LogicPrim
l ∈ Lock

Fig. 1: The language Sml, with a few slight cosmetic changes to more closely match
Cat and Cap

gram that effect-checks under the system in [3] can pass as causally atomic
under the model in [1].

2. We encode the purity effect system of [2] as widgets in a Petri net, reducing
the problem of affirming purity to a reachability problem over the net.

3. We show how to modify the atomicity analysis in [1] to include our purity
analysis, running both analyses simultaneously over the same net and using
the purity results to improve the atomicity ones.

2 Terminology & Notation

2.1 Language

Our example language is a hybrid of Sml, the statement language used in [1]
and Cat, the expression language used in [3]. As presented, Cat is more flexi-
bly expressive than Sml: it permits definitions of functions, function calls, and
dynamic spawning of threads. To compare the two languages, we restrict all
spawned threads to the top level, and remove function definitions and calls. We
call this restricted space the set of compatible programs. Compatible programs
are trivially translatable into the Sml version presented here. The language is
presented in Figure 1.

2.2 Effect-system related definitions

The race detection analysis used with Cat is not specified; it is supplied ex-
ternally. For this translation, we must assume a race detection analysis that is
computable by Petri nets, and in particular, this requires that the analysis be
value-insensitive. We will assume a sound race analysis in which variables are
marked as race-free when they are guaranteed to be protected by some fixed
lock at all times; for the purposes of this paper we define a specific, simple and

2

Atomicity = {⊥, B, L,R,A,>}
Γ : (Prim→ Atomicity)]

(V ar → {•}] Lock)
Σ ⊆ Lock

a; b ⊥ B L R A >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
B ⊥ B L R A >
R ⊥ R A R A >
L ⊥ L L > > >
A ⊥ A A > > >
> ⊥ > > > > >

a a∗

⊥ B
B B
R R
L L
A >
> >

Effect systems of Sml

Γ,Σ ` e : a

[Exp-Const]

Γ,Σ ` c : B

[Exp-Var]

Γ (x) ∈ Σ
Γ,Σ ` x : B

[Exp-Var-Race]

Γ (x) = •
Γ,Σ ` x : A

[Exp-Prim]

Γ,Σ ` ei : ai

Γ,Σ ` fn(e1, . . . , en) : (a1; . . . ; an;Γ (p))

Γ,Σ ` s : a,Σ′

[Stmt-Skip]

Γ,Σ ` skip : B,Σ

[Stmt-Seq]

Γ,Σ ` s1 : a1, Σ
′ Γ,Σ′ ` s2 : a2, Σ

′′

Γ,Σ ` s1; s2 : (a1; a2), Σ′′

[Stmt-Assign]

Γ,Σ ` e : a Γ (x) ∈ Σ
Γ,Σ ` x := e : (a;B), Σ

[Stmt-Assign-Race]

Γ,Σ ` e : a Γ (x) = •
Γ,Σ ` x := e : (a;A), Σ

[Stmt-Atomic]

Γ,Σ ` e : a,Σ′ a v A
Γ,Σ ` atomic s : a,Σ′

[Stmt-While]

Γ,Σ ` e : ae Γ,Σ ` s : as, Σ

Γ,Σ ` while e s : (ae; (as; ae)∗), Σ

[Stmt-If]

Γ,Σ ` e : ae Γ,Σ ` s1 : a1, Σ Γ,Σ ` s2 : a2, Σ

Γ,Σ ` if e s1 s2 : (ae; (a1 t a2)), Σ

[Stmt-Acquire]

l /∈ Σ
Γ,Σ ` acquire l : R,Σ ∪ { l }

[Stmt-Release]

l ∈ Σ
Γ,Σ ` release l : L,Σ \ { l }

` P : ok

[Prog-OK]

∀1 ≤ i ≤ n.Γ, ∅ ` si : ai, Σi

` s1|| · · · ||sn : ok

Fig. 2: The corresponding effect systems for atomicity and race detection

3

conservative race detector. More generally, we need a specific property we call
“sufficiency” that we will define later.

The atomicity analysis defined for Cat uses an effect system to model state-
ments as both-, left- or right-movers, as atomic statements, or as non-atomic
statements. (For now, ignore the ⊥ atomicity, and treat B as the bottom el-
ement of the lattice. We will need ⊥ when extending the system with purity
analyses.) The corresponding analysis for Sml, along with the race detector it
uses, is defined in Figure 2.

2.3 Petri-net related definitions

We follow the notation in [1] fairly closely, specializing some of their general
definitions to our specific usage.

Definition 1. Petri nets, places, transitions, flow relation.

A Petri net is a triple N = (P, T, F), where P is a set of places, T (disjoint from
P) is a set of transitions, and F ⊆ (P × T) ∪ (T × P) is the flow relation.

The union of two Petri nets N1 = (P1, T1, F1) and N2 = (P2, T2, F2) is defined
componentwise, as N1 ∪N2

def= (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2).
In our usage, places will mark program points, variables, locks, and various

administrative details, transitions will correspond to program statements or ex-
pressions, and the flow relation connects program points (and variables etc.) by
way of program statement transitions.

Definition 2. Preconditions, postconditions, neighborhood, independence rela-
tion, dependence relation.

The preconditions of a transition t are all places which flow to t; similarly the
postconditions are all places to which t flows; they are defined as

•t
def= {p ∈ P | (p, t) ∈ F}

t•
def= {p ∈ P | (t, p) ∈ F}

The neighborhood of a transition t is the union of its pre- and post-conditions.
Two transitions are independent if and only if their neighborhoods do not

overlap, and we define the independence relation accordingly:

I
def= {(t, t′) ∈ T × T | (•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅}

Two transitions are dependent if they are not independent — that is, the
neighborhoods of two dependent transitions overlap. The dependence relation is
defined as

D
def= (T × T) \ I

Definition 3. Marking of a net, enabled transitions, transition relation, firing
sequence, 1-safety.

4

A marking is a subset of the places in the net; each place in the marking is marked
with a token. More precisely, this is a 1-bounded, colorless marking. The general
definition permits marks to have colors (so a marking would be a partial function
from P to Colors), and permits multiple tokens on a given place simultaneously
(so a marking would be a partial function from P to multi-subsets of Colors).

A transition t is enabled under a marking M if •t ⊂M , that is, all precondi-
tions of the transition must be marked. If so, the transition can fire (though it is
not required to do so), and we say M t−→M ′ where M ′ = (M \ •t) ∪ t•. This re-
moves the marks from the preconditions and marks the postconditions; no other
marks are changed. Let ∗−→ be the reflexive, transitive closure of →. (Note that
this definition of t−→ presupposes that the marking is 1-bounded, since it uses set
operations instead of multi-set operations; the general definition would have to
handle colors and multiplicities in •t and M .)

A firing sequence is a sequence of transitions t1t2 . . . provided we have a
sequence of markings M0M1 . . . where M0 is the initial marking on the net, and
Mi

ti−→Mi+1.
A Petri net is 1-safe if every firing sequence leaves the marking 1-bounded,

that is, there does not exist a firing sequence for which at some marking Mi,
a transition ti is enabled that would leave more than 1 token on some place.
1-safety is crucial to our translations later involving purity; all our translations
from programs to Petri nets will preserve this property.

Definition 4. Trace, events, causal order, labeling.

A trace of a Petri net is T -labeled poset (E ,�, λ) with certain restrictions. E is
a finite or a countable set of events, the statements that occur when executing
a program. Every event is unique, but multiple events can correspond to the
same transition in the Petri net; we use the labeling function λ : E → T to give
names to the events. (In this way we can distinguish, for instance, the event
of entering a loop from the event of re-entering that loop for the fourth time.)
Finally, � ⊆ E × E is a partial order on E , called the causal order. Given �,
define the relation ≺ as e1 ≺ e2

def= e1 � e2 ∧ e1 6= e2. Define the immediate
causal order relation by

e1≺· e2
def= e1 ≺ e2 ∧ @f ∈ E .(e1 ≺ f ≺ e2)

The following conditions relate the causal order to the labeling function and the
dependence relation:

– ∀e ∈ E , {e′ ∈ E | e′ � e} is finite. In other words, there are only finitely many
events causally before e.

– ∀e, e′ ∈ E .e≺· e′ ⇒ λ(e)Dλ(e′). If two events are immediately causally or-
dered, the corresponding transitions must be dependent.

– ∀e, e′ ∈ E .λ(e)Dλ(e′) ⇒ (e � e′ ∨ e′ � e) If two events have dependent
labels, they must be causally ordered.

5

(In general, traces are more generally defined, and need not use the exact choices
here that labels name transitions and the depedence relation identifies “adjacent”
transitions. For this work, this restricted definition will suffice.)

In the rest of this paper, we will only consider traces that correspond to
firing sequences. In other words, given a trace Tr = (E ,�, λ), there is some total
ordering of the events e1, e2, . . . that respects the partial order, such that the

sequence M0
λ(e1)−−−→ M1

λ(e2)−−−→ M2 · · · is a valid firing sequence of the net, given
an initial marking M0. (This is not the precise technical definition of “traces
corresponding to firing sequences”, but suffices to give intuition. We won’t be
using the lowest-level definitions of traces in this paper.)

The definition of the immediate causal relation implies the following corol-
laries:

Corollary 1.

e1 ≺ e3 =⇒ ∃e2.e1≺· e2 � e3
e1 ≺ e3 =⇒ ∃e1.e1 � e2≺· e3

Proof. We prove the first statement; the second is symmetric. Consider the set of
events S = { e | e1 ≺ e � e3 }. The set S must not be empty since e3 ∈ S; it must
also be finite since we are drawing from a finite pool of events preceding e3 by
the first condition on traces, above. Define the set T = { e ∈ S | @e′ ∈ S.e′ � e }.
The set T must not be empty because � is a partial order, and hence must have
least elements: if every element in a finite set had a predecessor, then by the
pigeonhole principle some element would have itself as an ancestor, violating the
partial ordering. Therefore ∃e2 ∈ T satisfying the above condition. ut

Corollary 2.

e1 ≺ e3 ∧ e1≺· e2 ∧ (@e′2 6= e2.e1≺· e′2 � e3) =⇒ e1≺· e2 � e3
e1 ≺ e3 ∧ e2≺· e3 ∧ (@e′2 6= e2.e1 � e′2≺· e3) =⇒ e1 � e2≺· e3

Proof. Again we prove the first statement; the second is symmetric. By the above
corollary and the first premise, ∃f.e1≺· f � e3. If e2 = e3, then we are trivially
done, so assume e2 6= e3. If f = e2, we are trivially done, so assume f 6= e2. But
this contradicts our third premise. ut

Definition 5. Translation of a program.

Given a program P in our language, denote by TRANS(P) the Petri net con-
structed in Figure 4 corresponding to that program. (A graphical version of this
translation is drawn in Figure 3.) For a given statement s ∈ P (note: this s
is not necessarily a top-level statement as denoted in Prog-OK, but rather any
statement anywhere in P), denote also by TRANS(s) the subnet of the Petri net
corresponding to that statement, and similarly for a given expression e ∈ P . Fi-
nally, in a slight abuse of notation, we will say that places or transitions are “in”
a given net: for a net N = (P, T, F), p ∈ N ⇔ p ∈ P , and similarly for transitions
t. To keep the notation concise, we will say that an event e ∈λ N ⇔ λ(e) ∈ N .

6

As we’ll show later, we can use a slightly different translation than this one
(which was taken from [1]). The differences appear in just two statement forms.
First, the tbegin and tend transitions when translating atomic blocks are not
needed to formulate a definition of causal atomicity (see below). Second, to
achieve this revised definition, we need to add an explicit loop-head transition
when translating while loops; it is marked thead. These changes are denoted by
dashed lines in the diagram. The revised pseudocode implementing these changes
is shown in Figure 5.

Definition 6. First, Last, Start, End sets of events.

In the proofs that follow, it will be convenient to talk about the first or last
transitions that can possibly fire within a subnet. To be precise, define

START(s) def= {t ∈ TRANS(s) | @t′ ∈ TRANS(s).t′• ∩ •t 6= ∅}

END(s) def= {t ∈ TRANS(s) | @t′ ∈ TRANS(s).t• ∩ •t′ 6= ∅}

Examining figure 4 shows inductively that for any translated program statement
or expression, the START and END sets are non-empty.

We will also want to talk about the first events causally after a given event,
or the last events causally before a given event. For a given trace tr = (E ,�, λ),
and some event h ∈ E , define

LAST(s, h, tr) def= {e ∈λ TRANS(s) | (e � h)∧
@f ∈λ TRANS(s).(e ≺ f � h)}

FIRST(s, h, tr) def= {e ∈λ TRANS(s) | (h � e)∧
@f ∈λ TRANS(s).(h � f ≺ e)}

When the trace is clear from the context, the argument tr will be left implicit.
Typically, the event h will be such that h /∈λ TRANS(s), and in fact will not be
in the (translation of the) same thread as s.

Finally, we want to talk about the current execution of a given statement.
For a given trace tr, statement s, and event h ∈λ TRANS(s), define

CURRENT(s, h) def= {e ∈λ TRANS(s) | ∃eb ∈λ START(s).
(eb � e ∧ @ee ∈λ END(s).eb � ee � h)∧
∃ee ∈λ END(s).
(e � ee ∧ @eb ∈λ START(s).h � eb � ee)}

In other words, the current execution of a given statement is comprised of all
events after the most recent starting events before h, and before the soonest
ending events after h.

Definition 7. Causal atomicity [1].

7

atomic S

x fn(e
1
, ..., e

n
)c

release l

while e S if e S S’x := e S ; S’

skipacquire l

T(e)

write

x
1 x

n

...

T(S)

T(S’)

e = T

head

T(e)

e = F

T(S)

T(e)

e = T e = F

T(S) T(S’)

T(S)

begin

end

skip
rel

l
open

l
open

acq

read

x
i

T(e
n
)

T(e
1
)

...

c

p
in

p
in

p
in

p
in

p
in

p
in

p
in p

in

p
in

p
in

p
in

Lock
Snap

Lock
Snap

l
i

l
i

Fig. 3: Translation of programs from Cat into Petri nets. (To save space, the function
TRANS is denoted by T in the diagram.) Dashed circles, boxes and arrows indicate
components that differ from the translation presented in [1].

8

TRANSe : (Exp, V, tid)→ ((P, T, F), pin ∈ P, out ⊂ T)

TRANSe(c, V, tid) = ((P, T, F), pin, {tc}) where

P = {pin fresh(tid)}
T = {tc fresh(tid)}
F = {(pin, tc)}

TRANSe(x, V, tid) = ((P, T, F), pin, {tx}) where

P = {pin fresh(tid), xtid ∈ V }
T = {tx fresh(tid)}
F = {(pin, tx), (xtid, tx), (tx, xtid)}

TRANSe(fn(e1, . . . , en), V, tid) = ((P, T, F), p1, outn}) where

((Pi, Ti, Fi), pi, outi) = TRANSe(ei, V, tid) for 1 ≤ i ≤ n
P =

⋃
1≤i≤n Pi

T =
⋃

1≤i≤n Ti

F =
⋃

1≤i≤n Fi ∪
⋃

1≤i<n{(oi, pi+1) | oi ∈ outi}

TRANSs : (Stmt, V, L, tid)→ ((P, T, F), pin ∈ P, out ⊂ T)

TRANSs(skip, V, L, tid) = ((P, T, F), pin, {tskip}) where

P = {pin fresh(tid)}
T = {tskip fresh(tid)}
F = {(pin, tskip)}

TRANSs((s1; s2), V, L, tid) = ((P, T, F), p1, out2) where

((Pi, Ti, Fi), pi, outi) = TRANSs(ei, V, L, tid) for i = 1, 2

P = P1 ∪ P2

T = T1 ∪ T2

F = F1 ∪ F2 ∪ {(o1, p2)} | o1 ∈ out1}
TRANSs(x := e, V, L, tid) = ((P, T, F), pin, {tx}) where

((Pe, Te, Fe), pin, oute) = TRANSe(e, V, tid)

P = Pe ∪ {pe fresh(tid)} ∪ {xi | xi ∈ V }
T = Te ∪ {tx fresh(tid)}
F = Fe ∪ {(oe, pe) | oe ∈ oute} ∪ {(pe, tx)}∪
{(xi, tx) | xi ∈ V } ∪ {(tx, xi) | xi ∈ V }

TRANSs(atomic s, V, L, tid) = ((P, T, F), pin, {tend}) where

((Ps, Ts, Fs), ps, outs) = TRANSs(s, V, L, tid)

P = Ps ∪ {pin fresh(tid), pend fresh(tid)}
T = Ts ∪ {tbegin fresh(tid), tend fresh(tid)}
F = Fs ∪ {(pin, tbegin), (tbegin, ps), (pend, tend)} ∪ {(os, pend) | os ∈ outs}

Fig. 4: Pseudocode of TRANS(Prog), TRANS(Exp) and TRANS(Stmt). All
“fresh(tid)” places and transitions are meant to be new and marked as part of thread
tid, even if their names have appeared before in P or T .

9

TRANSs(if e s1 s2, V, L, tid) = ((P, T, F), pin, out1 ∪ out2) where

((Pe, Te, Fe), pin, oute) = TRANSe(e, V, tid)

((Pi, Ti, Fi), pi, outi) = TRANSs(si, V, L, tid) for i = 1, 2

P = Pe ∪ P1 ∪ P2 ∪ {pe fresh(tid)}
T = Te ∪ T1 ∪ T2 ∪ {tt fresh(tid), tf fresh(tid)}
F = Fe ∪ F1 ∪ F2 ∪ {(oe, pe) | oe ∈ oute}∪
{(pe, tt), (pe, tf), (tt, p1), (tf , p2)}

TRANSs(while e s, V, L, tid) = ((P, T, F), pin, {tf}) where

((Pe, Te, Fe), pin, oute) = TRANSe(e, V, L, tid)

((Ps, Ts, Fs), ps, outs) = TRANSs(s, V, L, tid)

P = Pe ∪ Ps ∪ {pe fresh(tid)}
T = Te ∪ Ta ∪ {tt fresh(tid), tf fresh(tid)}
F = Fe ∪ Fs ∪ {(oe, pe) | oe ∈ oute} ∪ {(os, pin) | os ∈ outs}∪
{(pe, tt), (pe, tf), (tt, ps)}

TRANSs(acquire l, V, L, tid) = ((P, T, F), pin, {tacq l}) where

P = {pin fresh(tid), lopen ∈ L, ltid ∈ L}
T = {tacq l fresh(tid)}
F = {(pin, tacq l), (lopen, tacq l), (tacq l, ltid)}

TRANSs(release l, V, L, tid) = ((P, T, F), pin, {trel l}) where

P = {pin fresh(tid), lopen ∈ L, ltid ∈ L}
T = {trel l fresh(tid)}
F = {(pin, trel l), (ltid, trel l), (trel l, lopen)}

TRANSp : Prog → ((P, T, F),M ⊂ P)

TRANSs(s1|| · · · ||sn) = ((P, T, F),M) where

V = {xi | x appears in some sj ∧ 1 ≤ i ≤ n}
L = {lopen | l appears in some sj} ∪ {li | l appears in some sj ∧ 1 ≤ i ≤ n}
((Pi, Ti, Fi), pi, outi) = TRANSs(si, V, L, i)

P =
⋃

1≤i≤n Pi

T =
⋃

1≤i≤n Ti

F =
⋃

1≤i≤n Fi

M = {lopen | l appears in some sj} ∪ {pi | 1 ≤ i ≤ n}

Fig. 4: (cont.) Pseudocode of TRANS(Prog), TRANS(Exp) and TRANS(Stmt). All
“fresh(tid)” places and transitions are meant to be new and marked as part of thread
tid, even if their names have appeared before in P or T .

10

To denote that a transition t is in some thread tid, write ttid. Similarly, to denote
that an event e corresponds to a transition in thread tid, write etid ⇔ λ(e) = ttid.
Once stated, the superscripts will be elided unless needed for clarity.

A code block B = atomic S in program P is causally atomic if and only if
TRANS(P) does not have a trace tr for which the following condition holds:

∃eTbegin, eT2 , fT
′
∈ E .ebegin � f � e2 where

λ(eTbegin) = tTbegin such that

T 6= T ′ and @eTend ∈ E .(λ(eTend) = tTend ∧ ebegin � eend � e2)

The transitions tTbegin and tTend are the two fresh transitions constructed in
TRANS(atomic S) (as opposed to any similarly-named transitions constructed
recursively for the body S of the atomic statement); T is the associated thread.
This condition states that a block of code is atomic if there is an interleaving
of events where f , an event from a second thread T ′, is causally after ebegin,
the beginning of the atomic block in thread T , another event e2 in thread T is
causally after f , and the atomic block still has not finished.

Definition 8. Sufficient race detector

Suppose a sound race analysis is run over a program, and two accesses to the
same variable x (from different threads) are shown to be race-free, and at least
one is a write-access. When translated to Petri nets, there are two transitions tTx
and tT

′

x corresponding to the variable accesses. Then for any trace where both
transitions fire, we have two events uT and vT

′
corresponding to tTx and tT

′

x .
We require that two additional events exist, uTsync and vT

′

sync, such that either
u � usync � vsync � v or v � vsync � usync � u. The events usync and vsync are
synchronization events that ensure the race-freedom of the accesses. Any race
analysis that ensures this requirement is called sufficient.

3 Petri-fied Effects: Extending atomicity from syntax to
dataflow

We proceed in stages:

1. We define a slightly different notion of causal atomicity, and prove it equiv-
alent to the original. This lets us modify the translation of programs into
Petri nets to remove some extraneous transitions.

2. We show that if an expression or statement has an atomicity strictly stronger
than A, there are restrictions on what operations it can perform.

3. We show that the race detector we defined is in fact sufficient for our needs.
4. We use the previous two results to show that if two statements are sequenced

in the program, and the sequence effect-checks as atomic, and both subnets
corresponding to the translations of the two statements are causally atomic,
then the combination of their nets is causally atomic as well.

5. We use this to show that for any program that effect checks, all atomic blocks
will indeed be causally atomic.

11

3.1 Refining the definition of causal atomicity

Lemma 1. The following condition is equivalent to the definition of causal
atomicity presented in [1]:

A code block B = atomic S in program P is causally atomic if and only if
TRANS(P) does not have a trace tr for which the following condition holds:

∃eT1 ∈λ START(S), eT2 , f
T ′
∈ E .e1 � f � e2 such that

T 6= T ′ and @eT ∈λ END(S).e1 � e � e2

In other words, the explicit transitions tTbegin and tTend from the original definition
are not needed.

Proof. First, a technical side point: In order for this lemma to actually be true,
we must ensure that the START set of any translated statement is never empty.
In the original translation of while loops, this is not the case. Accordingly, we
introduced the extra thead transition into the translation of while loops, but we
must now ensure that doing so does not change their causal atomicity, or else the
translation is broken. Fortunately this is easy to confirm: since this transition
immediately precedes only the translation of e, any trace that witnesses the non-
atomicity of the loop-with-head translation would witness the non-atomicity of
the loop-without-head translation, and vice versa. We spell this argument out in
more detail in connection with the tbegin and tend transitions for atomic blocks.

Denote by eTbegin and eTend the events corresponding to the begin and end
transitions, if they occur. First, we know that

∀e ∈ CURRENT(B, ebegin).e ∈λ START(S)⇔ ebegin≺· e)
∀e ∈ CURRENT(B, eend).e ∈λ END(S)⇔ e≺· eend)

We prove both directions of this, focusing on the first statement (the second is
symmetric):

(⇐) If ebegin≺· e, then λ(ebegin)Dλ(e). But by construction, tbegin only con-
nects to transitions in START(S) (and to transitions before TRANS(S),
but any events occurring there are not in CURRENT(B, ebegin)). Therefore
e ∈λ START(S).
(⇒) If e1 ∈λ START(S) and e1 ∈ CURRENT(B, ebegin), then ebegin � e1,
and by our corollary above, ∃f ∈ TRANS(S).ebegin≺· f � e1. If f 6= e1
then this contradicts e1 ∈ START(S), since events in START(S) have no
predecessors in TRANS(S).

Also note that

∀e ∈ CURRENT(B, ebegin),CURRENT(B, e) = CURRENT(B, ebegin)

We prove now both directions of the lemma:

12

(⇐) Assume atomic S is not new-causally-atomic. Show that atomic S is
not old-causally-atomic. Therefore, assume

∃e1, f, e2 ∈ E .e1 � f � e2 where

e1 ∈λ START(S), λ(e2) = t2, λ(f) = tT
′

3 such that

T 6= T ′ and @eT ∈λ END(S).e1 � e � e2

By construction, we know that if e1 ∈λ START(S), then we must have
∃ebegin ∈ CURRENT(B, e1), since tbegin is connected to pin of TRANS(S).
Therefore, CURRENT(B, e1) = CURRENT(B, ebegin). We know that ∀e ∈
CURRENT(B, ebegin).e ∈λ START(S) ⇔ ebegin≺· e; in particular, ebegin≺· eT1 .
Therefore ebegin≺· e1 � f � e2, and so ebegin � f � e2, as would be required by
the old definition.

Suppose ∃eend ∈ CURRENT(B, ebegin).λ(eend) = tend. We know that ∀e ∈
CURRENT(B, eend).e ∈λ END(S) ⇔ e≺· eend. Therefore if ∃eend ∈λ E .e1 �
eend � e2, then e1 � e � e2 for any e ∈λ END(S) (using the first corollary
above on e1, e and eend); the contrapositive gives us that (¬∀e ∈λ END(S).e1 �
e � e2) =⇒ (@eend ∈λ E .e1 � eend � e2). From our assumption we have
@e ∈λ END(S).e1 � e � e2, which together with the above implication gives us
the condition required by the old definition.

Therefore if an event f exists that satisfies this definition, then it also satisfies
the original definition. Equivalently, if a block B is not new-causally-atomic, then
it is not old-causally-atomic either.

(⇒) Assume atomic S is not old-causally-atomic. Show that atomic S is
not new-causally-atomic. Therefore, assume

∃ebegin, f, e2 ∈ E .ebegin � f � e2 where

λ(ebegin) = tTbegin, λ(e2) = tT2 , λ(f) = tT
′

3 such that

T 6= T ′ and @eend ∈ E .(λ(eend) = tTend ∧ ebegin � eend � e2)

We know that ∀e ∈ CURRENT(B, ebegin).e ∈λ START(S)⇔ ebegin≺· e, and
we know that START(S) is not empty. Therefore we must have that ∃eT1 ∈λ
START(S).e1 � f � e2 (using the second corollary above), as required by the
new definition.

We know that ebegin � e2; additionally, we know from our assumption that
@eTend.ebegin � eend � e2. Therefore we have that e2 ∈ CURRENT(B, e1). Sup-
pose e2 /∈ CURRENT(S, e1). Then e2 = ebegin or e2 = eend, since there are
no other events in CURRENT(B, e1) \ CURRENT(S, e1). But clearly the first
option is impossible, since we have ebegin � f � e2, and those inequalities are
actually strict. So e2 = eend. But this too yields a contradiction: it is easy to
satisfy ∃eTend.ebegin � eend � e2 when eend = e2. So e2 ∈ CURRENT(S, e1).
Define E = {e ∈ CURRENT(S, e1) | e ∈λ END(S)}. Then clearly, we must have
∀eT ∈ CURRENT(S, e1).@e′ ∈ E.e′ � e, since e′ is one of the end events of
CURRENT(S, e1). Therefore @eT ∈λ END(S).e1 � e � e2 as required.

13

Therefore if an event f exists that satisfies the original definition, then it
also satisfies this definition. Equivalently, if a block B is not old-causally-atomic,
then it is not new-causally-atomic either. ut

From now on, we use the second definition of causal atomicity exclusively,
and update our translation function TRANS to leave out the explicit transitions
tbegin and tend when translating atomic S, and to include the thead transition
when translating while loops.

The revisions to the translation function is shown in Figure 5. All other cases
are unchanged.

TRANSs(while e s, V, L, tid) = ((P, T, F), pin, {tf}) where

((Pe, Te, Fe), p′in, oute) = TRANSe(e, V, L, tid)

((Ps, Ts, Fs), ps, outs) = TRANSs(s, V, L, tid)

P = Pe ∪ Ps ∪ {pin fresh(tid), pe fresh(tid)}
T = Te ∪ Ta ∪ {thead fresh(tid), tt fresh(tid), tf fresh(tid)}
F = Fe ∪ Fs ∪ {(oe, pe) | oe ∈ oute} ∪ {(os, p

′
in) | os ∈ outs}∪

{(pin, thead), (thead, p
′
in), (pe, tt), (pe, tf), (tt, ps)}

TRANSs(atomic s, V, L, tid) = TRANSs(s, V, L, tid)

Fig. 5: Pseudocode of revised TRANS(P)

3.2 Enumerating the operations of movers

We state without proof the following property of our translation:

Claim. Consider a program P ∈ Sml such that ` P : ok, and a statement s in
P , in thread T . Then the neighborhood of each transition created in TRANS(s)
contains only a combination of places that are:

– locks (if the transition is a lock operation),
– variables (if it is a variable access), or
– in thread T as well (all other transitions).

Lemma 2. Consider a program P ∈ Sml such that ` P : ok, and a statement s
in P such that Γ,Σ ` s : a,Σ′ and a @ A. For an arbitrary trace, if there exists
an event eT ∈λ TRANS(s) and there exists another event fT

′
where T 6= T ′

such that that e≺· f or f ≺· e, then:

1. If a v R, then either λ(e) = tx and Γ (x) ∈ Σ or λ(e) = tacq l; that is, e
must be a race-free variable access or a lock-aquire.

2. If a v L, then either λ(e) = tx and Γ (x) ∈ Σ or λ(e) = trel l; that is, e
must be a race-free variable access or a lock-release.

14

Proof. By induction over the typing derivation of s:

– Case Stmt-Skip: s = skip. We must have λ(e) = tTskip, but the neighborhood
of this transition is only places in thread T . Therefore we cannot have that
e≺· f or f ≺· e; contradiction.

– Case Stmt-Assign: s = x := exp and Γ (x) ∈ Σ. We could have λ(e) = tTx ,
which makes this case trivially true. If λ(e) 6= tTx , then e ∈λ TRANS(exp).
By the typing rule, we know Γ,Σ ` exp : a′, and that (a′;B) v A, from
which we can infer a′ v A. By induction over the typing derivation of exp:
• Case Exp-Const: exp = c. We must have λ(e) = tTc , but the neighbor-

hood of this transition is only places in thread T . Therefore we cannot
have that e≺· f or f ≺· e; contradiction.
• Case Exp-Read: exp = x and Γ (x) ∈ Σ. We must have λ(e) = tTx , which

makes this case trivially true.
• Case Exp-Read-Race: exp = x and Γ (x) = •. By the typing rules, we

have Γ,Σ ` x : A,Σ, so therefore we have a contradiction: A 6@ A.
• Case Exp-Prim: exp = fn(e1, . . . , en). Examining the translation of

primitive expressions, we know that e ∈λ TRANS(ei) for some i, since no
other transitions are constructed. Further, by the definition of the (; ,)
operator and the typing derivation, we know that for each subexpression
ei, its atomicity ai v a′, and by induction we are done.

– Case Stmt-Assign-Race: s = x := exp and Γ (x) = •. We know that exp
effect-checks, so let a′ be its atomicity. By the typing rules, we have Γ,Σ `
s : (a′;A), Σ, so therefore we have a contradiction: (a;A) 6@ A.

– Case Stmt-Seq: s = s1; s2. Examining the translation of sequence state-
ments, we see that e ∈λ TRANS(s1) or e ∈λ TRANS(s2), since no other
transitions are constructed. Further, by the definition of the (;) and the
typing derivation, we know that the atomicities of either substatement must
be at most equal to the atomicity of the whole statement. Therfore, by in-
duction we are done.

– Case Stmt-While: s = while exp body. Examining the translation of while
loops, we see that it constructs three transitions tThead, t

T
t and tTf , and re-

cursively constructs TRANS(exp) and TRANS(body). Further, we see that
these three transitions are connected only to p′Tin, pTe , pTs , and to whatever
follows this loop in thread T ; therefore tTf Iλ(f) and tTt Iλf , so therefore
if λ(e) were any of these three transitions, then e≺· f and f ≺· e must be
false. Therefore e cannot be any of these three events, so e ∈λ TRANS(exp)
or e ∈λ TRANS(body). Finally, from the typing derivation we can infer
Γ,Σ ` exp : aexp and Γ,Σ ` body : abody, Σ and we know that a =
(aexp; (abody; aexp)∗). From the definition of the (∗) operator we can infer
that aexp v a and similarly for abody, and by induction we are done.

– Case Stmt-If: s = if exp s1 s2. Examining the translation of if statements,
we see that it constructs two transitions tTt and tTf , and recursively constructs
TRANS(exp), TRANS(s1), and TRANS(s2). Further, we see that these two
transitions are connected only to pTe , p1 or p2, all of which are in thread T , so
if λ(e) were either of these two transitions, then e≺· f and f ≺· emust be false.

15

Therefore e cannot be either of these two transitions, so e ∈λ TRANS(e),
e ∈λ TRANS(s1) or e ∈λ TRANS(s2). Again using the definition of (;) we
know that the atomicities of s1 and s2 are at most a, so by induction we are
done.

– Case Stmt-Atomic: s = atomic s′. Examining the translation of atomic
statements, we see that it recursively constructs TRANS(s′), and nothing
else, and by induction we are done.

– Case Stmt-Acquire: s = acquire l. We must have that λ(e) = tTacq. If a v R
then we are trivially true; else we are vacuously true.

– Case Stmt-Release: s = release l. We must have that λ(e) = tTrel. If a v L
then we are trivially true; else we are vacuously true.

ut

3.3 Sufficiency of our race detector

We need to show that the race analysis we encoded above is sufficient, and we
do this in two steps:

Lemma 3. Consider a progam P ∈ Sml such that ` P : ok, and its translation
TRANS(P). Consider a statement s in thread T such that Γ,Σ ` s : a,Σ′ occurs
within the derivation of ` P : ok. For an arbitrary trace, consider an arbitrary
event eTe ∈λ END(s). Suppose that

∀eTs ∈λ START(s),es ∈ CURRENT(s, ee).∀l ∈ Σ.
∃acqTl ∈ E .acql � es ∧ λ(acql) = tacq l∧
@relTl .acql � rell � es ∧ λ(rell) = tTrel l

Then

∀fT ·� ee.∀l ∈ Σ′.∃acqTl .
acql � f ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � f ∧ λ(rell) = tTrel l

In other words, if a set of locks Σ is held before a statement s executes in the
Petri net, and s executes yielding a new set of locks Σ′, then that set of locks
truly is held after s executes.

Proof. By induction on Γ,Σ ` s : a,Σ′.

– Case Stmt-Atomic, Stmt-Assign, Stmt-Assign-Race, Stmt-Skip: None of
these operations produce any events that acquire or release locks, except
inductively on their substatements (if any). See the sequence case.

– Case Stmt-Seq: s = (s1; s2). By assumption we know that ee exists, and
that END(s) = END(s2). By induction, we can therefore say that if some
Σ′′ is held just prior to this execution of s2, then Σ′ will be held after it.
By the construction of TRANS(s), we know that s1 must have terminated

16

in order for s2 to execute; therefore, ∃e1 ∈ LAST(s1, ee).e1 ∈λ END(s1). By
induction, if Σ is held just before this execution of s1, then Σ′′ will be held
just after it, giving the desired result.

– Case Stmt-If: Suppose s = if e s1 s2. Then TRANS(s) contains two transi-
tions tt and tf , as well as the recursive constructions on the substatements.
Trivially, tt and tf are not trel l. Also trivially, none of the transitions in
TRANS(e) are trel l. This leaves only the substatements s1 and s2. We know
that END(s) = END(s1) ∪ END(s2).
Suppose ee ∈λ END(s1) (the other case with s2 is symmetric). We have
Γ,Σ ` s1 : a1, Σ from the typing derivation. Let es be as given in the
assumption. For all eT1 ∈λ START(s1) such that es � e1 � ee, we know that
Σ is held before e1 by the above reasoning. By induction, we know Σ truly
is held after s1, which in turn means it is held after s.

– Case Stmt-While: We have s = while c b. Examining TRANS(s), we
see that END(s) = {tf} and START(s) = {thead}. Therefore, ∃eTc ∈λ
START(c).es � ec � ee. Now by the construction of TRANS(s), either
es≺· ec, or ∃eb ∈λ END(b).eb≺· ec; this latter case corresponds to iterating
the loop. Since we know that every event in a trace has a finite set of prede-
cessors, we know that the while loop must have iterated only a finite number
of times; we now use induction over the number of iterations. If es≺· ec, then
we are trivially done; Σ is unchanged by executing c. Otherwise, we effec-
tively have a “sequence” b; c, the loop has iterated some n times. The same
logic as for sequences shows that if Σ is held before the previous iteration of
b, it must hold after this current iteration of c. Immediately preceding the
execution of b is the transition tt, which does not modify Σ, and preceding
that are n − 1 iterations of the while loop. By induction, we can conclude
that if Σ is held before a while loop, it is held after n − 1 iterations; the
remaining arguments above show it is still held after n iterations.

– Case Stmt-Acquire: We have Γ,Σ ` acquire(l) : R,Σ ∪ { l }. There is
exactly one transition in TRANS(s), so START(s) = END(s) = {tTacq l};
moreover, es = ee. For a lock l′ ∈ Σ′:

• If l′ = l, then we trivially satisfy the condition above: we let acqTl = eTs .
• If l′ 6= l, then we know from the premise and from the observation that
es = ee that

∃acqTl′ .acql′ � ee ∧ λ(acql′) = tTacq l′∧
@relTl′ .acql′ � rell′ � ee ∧ λ(rell′) = tTrel l′

Since s doesn’t touch l′, we must have that this holds for all fT ·� eTe , as
desired.

– Case Stmt-Release: We have Γ,Σ ` release(l) : L,Σ \ { l }. By the same
argument as above, since s doesn’t touch l′ for l′ 6= l, we satisfy the condition.

ut

17

Lemma 4. Consider a program P ∈ Sml such that ` P : ok. Then for every
statement s such that Γ,Σ ` s : a,Σ′ appears in the derivation of ` P : ok, if

∀eT ∈λ START(s).∀l ∈ Σ.∃acqTl .
acql � e ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � e ∧ λ(rell) = tTrel l

then for every statement (or expression) s′ that appears within s, such that
Γ,Σ′′ ` s′ : a′, Σ′′′ appears in the derivation of ` P : ok we have the same
property:

∀eT ∈λ START(s′).∀l ∈ Σ′′.∃acqTl .
acql � e ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � e ∧ λ(rell) = tTrel l

Proof. Expressions do not change locksets, so if a lockset Σ holds at the begin-
ning of an expression exp, it holds at the beginning of every subexpression of
exp. Therefore we need only examine statements. By induction on the structure
of s:

– Case s = skip: vacuously true.
– Case s = x := exp: Looking at TRANS(s), we see that START(s) =

START(exp) and Σ′′ = Σ, so by induction we are done.
– Case s = if c s1 s2: Looking at TRANS(s), we see that START(s) =

START(c), so Σ holds at the beginning of c. Since the transitions tt and tf
do not modify locks, we know that Σ holds at the beginning of s1 and s2 as
well; by induction, we are done.

– Case s = acquire l or s = release l: vacuously true.
– Case s = atomic s′: Since START(s) = START(s′), by induction we are

done.
– Case s = (s1; s2): Since START(s) = START(s1), by induction we are done

with s1. By the typing rules, we must have that Γ,Σ ` s1 : a1, Σ1 and
Γ,Σ1 ` s2 : a2, Σ2. If an event e2 exists in START(s2), then s1 must have
terminated. We can pick any e1 ∈ LAST(s1, e2), which implies e1≺· e2, and
by Lemma 3, we know that Σ1 is held just after e1, which is to say, just
before e2, so by induction we are done with s2.

– Case s = while c b: The transition thead obviously does not modify any locks,
so we need a second level of induction here, since the condition c can execute
multiple times. We must show that if the loop has run for a finite number
of iterations (n), then on the n+ 1 execution of c, the locks Σ are held just
prior to the start of c. It is clear that the set {e ∈λ START(c)} = {e0, e1, . . .}
is the totally ordered set of events corresponding to each iteration of c: event
en occurs when the loop has executed n times. Let fn≺· en be the event just
prior to en in the same thread. By induction on n:
• Case n = 0: The condition has not executed at all, therefore λ(f0) =
thead, and so the same locks Σ are held before e0 as were held at the
start of the loop.

18

• Case n > 0: Suppose the loop has executed n times, and we’re about
to execute en. Then fn ∈λ END(b) and fn≺· en. By induction, the locks
Σ are held before en−1. Then after c executes, the locks are still held
(because expressions don’t change locksets), after tt executes the locks
are still held (since tt is not a lock operation), and by Lemma 3, some
lockset Σ′ is held after fn, and by the Stmt-While rule, we know that
Σ′ = Σ. Therefore, the lockset Σ is held just prior to en as well, as
required. (We know that executing b for the nth time terminates, because
event en exists.)

ut

The key corollary to this is

Lemma 5. Consider a program P ∈ Sml such that ` P : ok. Then for every
statement s such that Γ,Σ ` s : a,Σ′ appears in the derivation of ` P : ok, we
know that

∀eT ∈λ START(s).∀l ∈ Σ.∃acqTl .
acql � e ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � e ∧ λ(rell) = tTrel l

Proof. We know P = s1||s2|| . . . ||sn. For every statement si, we know Γ, ∅ ` si :
ai, Σ

′, and we know all threads do start with no locks held in the Petri net, we
can apply the above lemma. ut

We can therefore conclude

Lemma 6. Our race detector is sufficient.

Proof. Consider two accesses to variable x in different threads that are deter-
mined to be race-free, as required by the definition of sufficient race detectors;
let s and t be the primitive statements or expressions in which these accesses
occur, and T and T ′ be their threads respectively. By Lemma 5, we know that

∀eT ∈λ START(s).∀l ∈ Σ.∃acqTl .
acql � e ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � e ∧ λ(rell) = tTrel l

(and similarly for statement t) and in particular, since the accesses are race-free,

∀eT ∈λ START(s).∃acqTΓ (x).

acqΓ (x) � e ∧ λ(acqΓ (x)) = tTacq Γ (x)∧

@relTΓ (x).acqΓ (x) � relΓ (x) � e ∧ λ(relΓ (x)) = tTrel Γ (x)

We can conclude that acqTΓ (x) � eTs , for the specific event λ(eTs) = tTx that

accesses x in statement s, and similarly acqT
′

Γ (x) � eT
′

t for the event λ(eT
′

t) =

19

tT
′

x that accesses x in statement t. Assume that eTs � eT
′

t — they must be
ordered since they access the same variable (the opposite ordering is symmetric).
Therefore acqTΓ (x) � eTs � eT

′

t . We know that acqTΓ (x) � acqT
′

Γ (x) or vice versa,

since they access the same lock. We proceed by cases to determine when acqT
′

Γ (x)

can occur (a symmetric argument holds when thread T ′ starts first):

1. acqT
′

Γ (x) � acq
T
Γ (x) � e

T
s � eT

′

t . This is a contradiction: from the line above we

know that the lock Γ (x) is continually held from acqT
′

Γ (x) until eT
′

t (since no
release event happens between these two events), therefore the place Γ (x)open
is unmarked, so therefore acqTΓ (x) cannot happen here.

2. acqTΓ (x) � acqT
′

Γ (x) � eTs � eT
′

t . This is a contradiction for the same reason:
we know that the lock Γ (x) is continually held from acqTΓ (x) until eTt , so

therefore acqT
′

Γ (x) cannot happen here.

3. acqTΓ (x) � eTs � acqT
′

Γ (x) � eT
′

t . This is the interesting case. It obeys all the
constraints we know so far, however, the lock Γ (x) is still held by thread T
until released. The only way for these four events to occur in this order is
for there to be a fifth event in thread T that releases the lock:

acqTΓ (x) � e
T
s � relTΓ (x) � acq

T ′

Γ (x) � e
T ′

t

where λ(relTΓ (x)) = tTrel Γ (x). Now we have precisely the events required by
our definition of sufficient race conditions: the last four events above.

4. acqTΓ (x) � eTs � eT
′

t � acqT
′

Γ (x). Again we have a contradiction: we know

acqT
′

Γ (x) � e
T ′

t .

Therefore, whenever our race detector concludes that two accesses are race-free,
we are guaranteed two events, one in each thread, that happen between the two
variable accesses, as required by our definition of sufficient race detectors. ut

3.4 Causal atomicity of sequenced statements

Now we have a powerful lemma, which says that if we have a statement (or
expression) that effect-checks as atomic, and its translation to a Petri net can be
decomposed into two subnets, both of which are known to be causally atomic,
then the combined net is also causally atomic. Intuitively, we show this by noting
that if there were an event that witnesses the non-causal-atomicity of the full
statement, it must be causally between the two subnets, and then show that
even that causal ordering is impossible.

Lemma 7. Assume a program P ∈ Sml such that ` P : ok. Consider two
statements (or expressions) s1 and s2 found in P , both in the same thread T ,
and let N1 = TRANS(s1) and N2 = TRANS(s2) be subnets of TRANS(P) that
result from the translation of the two statements. Assume that:

1. Γ,Σ ` s1 : a1, Σ
′ and Γ,Σ′ ` s2 : a2, Σ

′′, and (a1; a2) v A.

20

2. N1 and N2 are causally atomic within TRANS(P).
3. ∀t1 ∈ END(s1).∃t2 ∈ START(s2).t•1 ∩ •t2 6= ∅ in the full Petri net, that is,

that N2 is “immediately after” N1 in TRANS(P).

Then N1 ∪N2 is causally atomic.

Proof. By inspecting the operator (;) and by assumption 1, we see that a1 v R
or a2 v L (or both). We have that s1 and s2 are causally atomic by assumption 2.
From the definition of causal atomicity, we therefore know that for any possible
trace,

@uT2 ∈λ TRANS(s1), fT
′
∈ E .(uTstart � fT

′
� uT2) ∧ ¬(uTstart � uTend � uT2)

@vT2 ∈λ TRANS(s2), gT
′′
∈ E .(vTstart � gT

′′
� vT2) ∧ ¬(vTstart � vTend � vT2)

where uTstart ∈λ START(s1) and uTend ∈λ END(s1) (resp. vTstart and vTend) corre-
spond to transitions in the START and END sets in the translation of s1 (resp.
s2) and event fT

′
(resp. gT

′′
) is not in the same thread T . We therefore want to

show that for every possible trace,

@eT2 ∈λ TRANS(s1) ∪ TRANS(s2), hT
′′′
∈ E .

(estart � h � e2) ∧ @eTend ∈λ END(s2).(estart � eend � e2)

where as above, eTstart ∈λ START(s1) and eTend ∈λ END(s2), and hT
′′′

is an
event in some thread T ′′′ 6= T .

We proceed by contradiction. Suppose there existed some trace in which such
an event hT

′′′
did exist (and an event eT2 that follows it). Such an event would

satisfy
(estart � h � e2) ∧ ¬(estart � eend � e2)

We know that LAST(s1, h) is not empty, because by assumption, estart � h,
so it must be that either estart ∈ LAST(s1, h) or else some other event eTL exists
such that estart � eL � h, and eL ∈ LAST(s1, h).

We know that FIRST(s1, h) is empty, because otherwise we could violate the
atomicity of TRANS(s1):

∃eTF ∈ FIRST(s1, h).estart � h � eF

which is a contradiction. So h interacts with something in LAST(s1, h) and
nothing after it in TRANS(s1).

We know that e2 must be in TRANS(s2), since FIRST(s1, h) is empty, and
no other events exist besides those in TRANS(s1) and TRANS(s2). Therefore,
we know that either e2 ∈ FIRST(s2, h) or else some other event eTF exists such
that h� eF � e2, and hence FIRST(s2, h) is not empty.

We know that LAST(s2, h) is empty, because otherwise we could violate the
atomicity of TRANS(s2):

∃eTL ∈ LAST(s2, h).eL � h � e2

21

which is a contradiction. So h interacts with something in LAST(s2, h) and
nothing before it in TRANS(s2).

Therefore it must be that

∃uT ∈ LAST(s1, h), vT ∈ FIRST(s2, h).u � h � v

In other words, if an event h exists at all, it must happen between the last
interfering event in TRANS(s1) and the first interfering event in TRANS(s2)
(based on the two sets above that are non-empty). Additionally

@w ∈λ TRANS(s1) ∪ TRANS(s2).

∀uT ∈ LAST(s1, h), vT ∈ FIRST(s2, h).u � w � v

In other words, there are no other interfering events in the translations of the
two statements between those identified before (based on the two sets above that
are empty).

It is possible that h is not unique, that is, there might be multiple events
causally between u and v (for any pair of events u and v as above). Therefore,
define events hT

′′′

1 and hT
′′′

2 , not necessarily distinct from hT
′′′

, such that

uT ≺·hT
′′′

1 � hT
′′′
� hT

′′′

2 ≺· vT

Now we have our contradiction. Suppose s1 is a right-mover. Then the event
u must either be a lock acquire or a race-free variable access (by Lemma 2 above),
and so must event h1 (since u≺·h1, which can only happen if both events access
the same resource).

If both events are lock acquires of some lock l, then we have an immediate
contradiction, since it is not possible for two threads to acquire the same lock
simultaneously. In our translation into Petri nets, a lock-acquire operation moves
a mark from lopen to lT . Any other lock-acquire operations on the same lock l
are not enabled until the lock is released and the mark is restored to lopen. How-
ever, we have that u≺·h1, so no lock-release event occurs before h1 supposedly
happens. (A similar contradiction exists if h1 is a lock release; thread T ′′′ can’t
release a lock held by thread T .)

If both events access a variable (and clearly one must be a variable write, or
else there is no conflict) then we appeal to the race-freedom of the access. We
assumed the race detector was sound, so therefore both events must be race free.
We also assumed that it was sufficient, so we know some lock l must be held
for all accesses to this variable, or else there may be a race condition. So there
must be some event in thread T which acquires lock l, and similarly there must
be some event in thread T ′′′ that acquires the same lock. Since we assumed that
u≺·h1, and u doesn’t release the lock (it’s a variable access, and does nothing to
locks), h1 must happen after the lock is released. We assumed that s1 is a right
mover, which means it cannot release the lock. So any further events that interact
with lock l must occur in TRANS(s2) (by assumption 3, since TRANS(s2) is
“immediately after” TRANS(s1) in the overall net—no other events in thread

22

T can intervene). Clearly, the first such event must be to release the lock (since
it is currently held), and this could happen before or after event v. But the lock
must be held for event v, since it is a race-free access, so if the lock were released,
it must be reacquired before event v. But this is not atomic, which contradicts
our assumption that s2 effect-checked as atomic. Therefore, the lock l must be
continuously held between u and v. We must have therefore that v � h1, but
this contradicts our assumption that h � v. We can conclude that if s1 is a
right-mover, then no event h can occur during s1, between s1 and s2, or during
s2, and therefore that the union N1 ∪N2 is causally atomic.

A symmetric argument holds when s2 is a left-mover. ut

3.5 Causal atomicity encompasses effect-based atomicity

We can now state the main theorem of this section, which shows that causal
atomicity is at least as strong as effect-based atomicity.

Theorem 1. For every program P ∈ Sml where ` P : ok, then all atomic
blocks in P are causally atomic when translated into Petri nets.

Proof. Consider an arbitrary expression e ∈ P within an arbitrary atomic block.
We assume that all of P effect-checks, including all atomic blocks. We wish to
show that if Γ,Σ ` e : a and a v A, then TRANS(e) is causally atomic in the
full net resulting from the translation of P . We proceed by induction on the
typing derivation:

– Case Exp-Const: We have e = c, which translates to a single transition, and
therefore we are trivially atomic.

– Case Exp-Var and Exp-Var-Race: We have e = x, which translates to a
single transition, and therefore we are trivially atomic.

– Case Exp-Prim: We have e = fn(e1, . . . , en). The translation of this yields
several subnets, one for each subexpression ei. We know that Γ,Σ ` e : a
and a v A, so we know that (a1; . . . ; an) v A, where ai is the atomicity of
subexpression e1. Finally, each subexpression is connected in succession to
the following one. This meets all the criteria for Lemma 7, and so by n− 1
applications of the lemma, we are done.

Consider an arbitrary statement s ∈ P within an arbitrary atomic block. We
assume that all of P effect-checks, including all atomic blocks. We wish to show
that if Γ,Σ ` s : a,Σ′ and a v A, then TRANS(s) is causally atomic in the full
net resulting from the translation of P . We proceed by induction on the typing
derivation:

– Case Stmt-Seq: We have s = s1; s2, and we know that Γ,Σ ` s : a,Σ′, and
a v A. We therefore know that Γ,Σ ` s1 : a1, Σ

′′ and Γ,Σ′′ ` s2 : a2, Σ
′

and that (a1; a2) = a. This meets all the criteria for Lemma 7, and so we are
done.

23

– Case Stmt-If: s = if e s1 s2. The translation of s decomposes into three
subnets, one per subexpression, as well as two extra transitions tt and tf in-
dicating which branch of the if to take. By induction, we assume that each
of these subnets is causally atomic. It is trivial to see that “grouping” tt
with TRANS(s1) and tf with TRANS(s2) does not affect their causal atom-
icity: since these transitions are immediately before only the entry points
of TRANS(s1) and TRANS(s2), any event f that could witness the non-
atomicity of the grouping would witness the non-atomicity of the subexpres-
sions themselves. By assumption, Γ,Σ ` s : a,Σ and a v A. Following the
inference rule, we have Γ,Σ ` e : ae and Γ,Σ ` si : ai, Σ. We therefore
know that (ae; a1) v a and (ae; a2) v a. This meets all the requirements for
Lemma 7, so we apply it twice, with e and s1 and then with e and s2, and
so we are done.

– Case Stmt-Loop: s = while e s′. The translation of s decomposes into
two subnets, one for the guard and one for the body, as well as two extra
transitions tt and tf indicating whether to loop or to exit. Inductively we
assume that each subnet is causally atomic. Again we can group tt with
TRANS(s′) without affecting its atomicity. Using the typing rule, we see
that a loop’s type is equivalent to the transitive closure of its body’s type
when repeated indefinitely. Examining the closure operation, we see that
a∗ = (a; a) for all atomicities. Therefore the atomicity of the loop is a =
(ae; as′ ; ae; as′ ; ae). By examination, for a v A we must have ae @ R∧as = B
or ae = B ∧ as @ L. We apply Lemma 7 twice: first with e and s′, and the
second time with s′ and e, indicating that no atomicity violation can occur
between the condition and the body or between the body and the return to
the condition. Finally, since the union of the two subexpressions is causally
atomic, we can group the tf transition to it without changing the atomicity,
showing that the whole loop statement is causally atomic.

– Case Stmt-Acquire, Stmt-Release, Stmt-Skip: These each translate to a
single transition, and therefore we are trivially atomic.

– Case Stmt-Atomic: s = atomic s′. But TRANS(atomic s′) = TRANS(s′),
and by induction we are done.

– Case Stmt-Assign, Stmt-Assign-Race: s = x := exp. The translation of this
expression decomposes into two subnets: the TRANS(exp), and a transition
tTx that accesses the variable x. We know that TRANS(e) is causally atomic.
Therefore, if there exists an event fT

′
that witnesses the non-atomicity of

TRANS(s), it must satisfy

∃eT1 ∈λ START(s), eT2 ∈λ E .
(e1 � f � e2) ∧ (@eTend ∈λ END(s).e1 � eend � e2)

By examining TRANS(s), we see that END(s) = {tTx } and START(s) =
START(exp). Moreover, we know that e2 /∈ CURRENT(exp, e1), since if it
were, then @eend ∈ END(exp).eend � e2, and then f would witness the non-
atomicity of TRANS(exp), which is impossible by assumption. Therefore

24

we must have CURRENT(s, e1) \ CURRENT(exp, e1) = {e2}. But then
∃eend ∈ END(s).eend � e2, which contradicts our assumption about f .

ut

4 Pure-Sml: distilling atomicity from impure sources

Syntax of Pure-Sml

P ∈ Prog ::= ·
∣∣ s||P

s ∈ Stmt ::= x := e
∣∣ s ; s

∣∣ if e s s ∣∣ loop s ∣∣ atomic s
∣∣ skip∣∣ acquire l

∣∣ release l ∣∣ block s ∣∣ break ∣∣ pure s
e ∈ Exp ::= c

∣∣x ∣∣ p(ē)
x ∈ V ar = UnstableV ar] StableV ar
c ∈ Const = Z

fn ∈ Prim = ArithPrim] LogicPrim
l ∈ Lock

Fig. 6: The language Pure-Sml, with a few slight cosmetic changes to more closely
match Cat and Cap

4.1 Language

Figure 6 defines the language Pure-Sml. Compared to Sml, the key addition is a
new pure statement that indicates the contained code should be side-effect free.
To simplify the analysis, while loops have become infinite loops; to escape them,
a break statement is introduced that jumps to the end of the nearest enclosing
block statement. (Hence, a while loop now is written as block loop.)

The distinction between StableV ars and UnstableV ars now becomes impor-
tant: UnstableV ars may be written to within a pure block, but they can take
on any (non-deterministic) value. This is the essence of the abtract atomicity
which is presented in Cap.

4.2 Effect-system related definitions

We need to provide a purity analysis for Pure-Sml, which we can then translate
to widgets in Petri nets. Looking at the purity effect system in Cap, we see that
all functions used in the supposedly pure expression must be pure, and that the
expression itself must be pure. Further, pure is defined to mean that the expres-
sion only writes to unstable variables, and terminates with exactly the same set
of locks held as it help at its beginning. Moreover, looking at the abstract se-
mantics of Cap (against which the authors define their notion of atomicity), we

25

see that pure blocks can be skipped altogether, and the expressions thus skipped
can evaluate to any value consistent with evaluating the skipped expression in
an undefined context. (This is an optimization that permits constant expressions
to be relied upon outside a pure block.)

For Pure-Sml, this simplifies substantially: we have no functions, and our
programs consist of statements, so pure statements need not return any value
at all. Therefore, to track purity, we have only to track locksets and variable
accesses within pure blocks. The effect system that achieves this (as well as
providing atomicity and race-detection analyses) is shown in figure 7. As in Cap,
we extend the atomicity annotations to a pair of basic atomicities a ↑ b, where the
first component indicates the atomicity of the statement if it terminates normally
(i.e., without breaking) and the second component indicates the atomicity under
abrupt termination (i.e. via break). The new atomicity ⊥ indicates that the
statement cannot terminate in the given mode; for instance, expressions never
terminate abruptly. The rule Stmt-Block shows that block statements always
terminate normally, with atomicity approximated by the join of normal and
abrupt atomicities. Stmt-Loop shows that loops never terminate normally, but
may run an unbounded number of times (a∗) before terminating abruptly (b).
Finally, variable writes now check that the variable x is in the set of modifiable
variables X; initially X is the set of all variables, but is limited to UnstableV ars
inside pure blocks. Moreover, Stmt-Pure ensures that pure blocks terminate
with the same lockset with which they began. As in Cap, we enforce a syntactic
restriction on pure blocks, and prohibit them from being syntactically nested.

4.3 Petri-net related definitions

Constructing this effect system in Petri nets is accomplished by modifying the
translation function shown before. The important changes to the translation are
shown graphically in figure 8, and defined explicitly in figure 11. Five state-
ment forms are crucial: variable accesses, lock accesses, pure statements, block
statements, break statements; we construct each of these in turn.

Handling variable accesses uses the same construction as in Sml; the differ-
ences lie in the coloring rules. Informally, when checking for purity violations
each mark contains a color indicating whether it is inside a pure block that is
ok, i.e. still pure (o), or inside a pure block that has gone “bad” and done an
impure write (b). Colors start at o upon entry to a pure block, and change to b
upon stable variable writes, and stay unchanged otherwise. It is an error to exit a
pure block normally if the color is b; a break statement must be used instead. We
defer detecting purity violations by writes until exiting the pure block, because
we cannot know whether the writes will be retroactively permitted by a break
statement until we reach the end of the block. We will return to these coloring
rules more formally later.

Locks are handled slightly differently than in the basic causal atomicity case.
Here, not only do we have a place L for every lock, but we also have two place
Li-held and Li-other, that indicate for each thread i whether it is held or not by

26

Atomicity effect system of Pure-Sml

a, b ∈ Atomicity = {⊥(will not terminate), B, L,R,A,>(not atomic)}

Γ ` e : a

[Exp-Const]

Γ ` c : B

[Exp-Var]

Γ (x) 6= •
Γ ` x : B

[Exp-Var-Race]

Γ (x) = •
Γ ` x : A

[Exp-Prim]

Γ ` ei : ai

Γ ` fn(e1, . . . , en) : (a1; . . . ; an;Γ (p))

Γ ` s : a ↑ b

[Stmt-Pure]

Γ ` s : a ↑ b a v A
Γ ` pure s : B ↑ b

[Stmt-Skip]

Γ ` skip : B ↑ ⊥

[Stmt-Seq]

Γ ` s1 : a1 ↑ b1 Γ ` s2 : a2 ↑ b2
Γ ` s1; s2 : (a1; a2) ↑ (b1 t (a1; b2))

[Stmt-Loop]

Γ ` s : a ↑ b
Γ ` loop s : ⊥ ↑ (a∗; b)

[Stmt-Assign]

Γ ` e : a Γ (x) 6= •
Γ ` x := e : (a;B) ↑ ⊥

[Stmt-Assign-Race]

Γ ` e : a Γ (x) = •
Γ ` x := e : (a;A) ↑ ⊥

[Stmt-Atomic]

Γ ` s : a ↑ b a, b v A
Γ ` atomic s : a ↑ b

[Stmt-If]

Γ ` e : ae Γ ` s1 : a1 ↑ b1 Γ ` s2 : a2 ↑ b2
Γ ` if e s1 s2 : (ae; (a1 t a2)) ↑ (ae; (b1 t b2))

[Stmt-Acquire]

Γ ` acquire l : R ↑ ⊥

[Stmt-Release]

Γ ` release l : L ↑ ⊥

[Stmt-Block]

Γ ` s : a ↑ b
Γ ` block s : (a t b) ↑ ⊥

[Stmt-Break]

Γ ` break : ⊥ ↑ B

Fig. 7: The effect systems for atomicity, race detection, and purity.

27

Race-detection effect system of Pure-Sml

Γ,Σ ` e : ok

[Exp-Const]

Γ,Σ ` c : ok

[Exp-Var]

Γ (x) ∈ Σ
Γ,Σ ` x : ok

[Exp-Var-Race]

Γ (x) = •
Γ,Σ ` x : ok

[Exp-Prim]

Γ,Σ ` ei : ok

Γ,Σ ` fn(e1, . . . , en) : ok

Γ,Σ ` s : Σ′ ↑ Σ′′

[Stmt-Pure]

Γ,Σ ` s : Σ ↑ Σ′

Γ,Σ ` pure s : Σ ↑ Σ′

[Stmt-Break]

Γ,Σ ` break : Σ′ ↑ Σ

[Stmt-Assign]

Γ (x) ∈ Σ Γ,Σ ` e : ok

Γ,Σ ` x := e : Σ ↑ Σ′

[Stmt-Assign-Race]

Γ (x) = • Γ,Σ ` e : ok

Γ,Σ ` x := e : Σ ↑ Σ′

[Stmt-Seq]

Γ,Σ ` s1 : Σ1 ↑ Σ′1 Γ,Σ1 ` s2 : Σ2 ↑ Σ′2
Γ,Σ ` s1; s2 : Σ2 ↑ Σ′1 ∩Σ′2

[Stmt-Skip]

Γ,Σ ` skip : Σ ↑ Σ′

[Stmt-Loop]

Γ,Σ ` s : Σ ↑ Σ′

Γ,Σ ` loop s : Σ′′ ↑ Σ′

[Stmt-Atomic]

Γ,Σ ` s : Σ′ ↑ Σ′′

Γ,Σ ` atomic s : Σ′ ↑ Σ′′

[Stmt-If]

Γ,Σ ` s1 : Σ ↑ Σ′ Γ,Σ ` s2 : Σ ↑ Σ′ Γ,Σ ` e : ok

Γ,Σ ` if e s1 s2 : Σ ↑ Σ′

[Stmt-Block]

Γ,Σ ` s : Σ′ ↑ Σ′′

Γ,Σ ` block s : Σ′ ∩Σ′′ ↑ Σ′′′

[Stmt-Acquire]

l /∈ Σ
Γ,Σ ` acquire l : Σ ∪ { l } ↑ Σ′

[Stmt-Release]

l ∈ Σ
Γ,Σ ` release l : Σ \ { l } ↑ Σ′

Fig. 7: The effect systems for atomicity, race detection, and purity.

28

Purity effect systems of Pure-Sml

p ∈ Purity = {⊥(must be pure on normal termination),>(may be impure)}

Γ,X, p,Σ ` s : p′, Σ′

[Stmt-Pure]

Γ,X ∩ UnstableV ar,⊥, Σ ` s : ⊥, Σ
Γ,X, p,Σ ` pure s : p,Σ

[Stmt-Break]

Γ,X, p,Σ ` break : ⊥, Σ′

[Stmt-Assign]

Γ (x) ∈ Σ x ∈ X
Γ,X, p,Σ ` x := e : >, Σ

[Stmt-Assign-Race]

Γ (x) = • x ∈ X
Γ,X, p,Σ ` x := e : >, Σ

[Stmt-Seq]

Γ,X, p,Σ ` s1 : p1, Σ1 Γ,X, p1, Σ1 ` s2 : p2, Σ2

Γ,X, p,Σ ` s1; s2 : p2, Σ2

[Stmt-Skip]

Γ,X, p,Σ ` skip : p,Σ

[Stmt-Loop]

Γ,X, p,Σ ` s : p′, Σ

Γ,X, p,Σ ` loop e s : p′, Σ

[Stmt-Atomic]

Γ,X, p,Σ ` s : p′, Σ′

Γ,X, p,Σ ` atomic s : p′, Σ′

[Stmt-If]

Γ,X, p,Σ ` s1 : p1, Σ Γ,X, p,Σ ` s2 : p2, Σ

Γ,X, p,Σ ` if e s1 s2 : p1 t p2, Σ

[Stmt-Block]

Γ,X, p,Σ ` s : p′, Σ′

Γ,X, p,Σ ` block s : p′, Σ′

[Stmt-Acquire]

l /∈ Σ
Γ,X, p,Σ ` acquire l : p,Σ ∪ { l }

[Stmt-Release]

l ∈ Σ
Γ,X, p,Σ ` release l : p,Σ \ { l }

Valid programs of Pure-Sml

` P : ok

[Prog-OK]

Γ, ∅ ` si : Σi ↑ Σ′i Γ ` si : ai ↑ bi Γ, V ar,⊥, ∅ ` si : pi, Σi 1 ≤ i ≤ n
` s1|| · · · ||sn : ok

Fig. 7: The effect systems for atomicity, race detection, and purity.

29

Locks -- assume one row for every lock L, M, N, ,
with places L, L1-other, Lt-held for each of the t threads
indicating the thread is held by that thread or some other one

acquire L L

release L L L1
other

L1
held

L1
other

L1
held

Snapshot L for thread 1: assume locks as above
Ensure: L’1 and ~L’1 reflect current status of L1-open and L1-held
Ensure: (L’1 = L1-held) ∧ (~L’1 = L1-open)

L1
other

L1
held

copy-L1

L’1

copy-~L1

~L’1

SN
A

PS
H

O
T

begin-pure

end-pure

Program

Snapshot L, 1 Snapshot N, 1Snapshot ...

Translation of PURE { PROGRAM }
ERR is globally unique
Places for locks are not shown

check locks

L’1 ~L’1 N’1 ~N’1

Check L, 1 Check N, 1Check ...

ERR

check purity

skip purity atomicity

start snap

end snap

L1
held

L1
other

AND AND

ERR

AND

Check L for thread 1: assume locks as above
Ensure: ((~L’1 = L1-held) ∨ (L’1 = L1-open)) ⇔ ERROR
ERR is globally unique

ANDC
H

EC
K

L’1 ~L’1

OR(X1 , X2 , , Xt) computes (X1 ∨ X2 ∨ ∨ Xt)
OR is correct and 1-safe if X1 , , Xt are mutually exclusive

X2 XtX1

O
R

Fig. 8: Widget construction to implement purity checking of locksets and variable ac-
cesses. Each lock place L and Liother starts off marked. Double-headed arrows indicate
a place is both a pre- and post-condition for a transition.

30

begin-pure

end-pure

Program

Translation of PURE { PROGRAM }
NotPure, PureOK and PureBAD
 are thread unique

Pure
OK

cleanup

exit-pure

Not
Pure

Pure
BAD

ERR

Check all locks

Not
Pure

break

L’1 ~L’1

OR

N’1 ~N’1

OR

Pure
OK

Pure
BAD

OR

Pure
BAD

write X write X

Pure
OK

write X

Not
Pure

X2 XtX1

OR(L1 , L2 , , Lt) computes (L1 ∨ L2 ∨ ∨ Lt)
OR is correct and 1-safe if L1 , , Lt are mutually exclusive

L2 LtL1

O
R

Fig. 9: Widget construction to implement break statements. Writing to variables has
changed, as has the bookkeeping needed when entering a pure block. The initial mark-
ing for break statements is empty; all markings come from the rest of the net.

31

that thread. Acquiring a lock moves a mark from Li-other to Li-held; releasing
a lock returns it to Li-other.

Translating pure statements requires checking that no impure writes to stable
variables have occurred, and that the final lockset is equal to the initial lockset.
We delegate the responsibility of checking for impure writes to the coloring rules
for variable accesses (the informal description given above), leaving us only with
the locksets. To track the locksets held at the beginning and end of a pure
statement, we need a fairly complicated widget in the Petri net. Essentially,
we take a “snapshot” of the lock state of the entire program, copying Li-held
and Li-other to two temporary places L′i and ¬L′i; we do this for every lock
L. Note that exactly one of ¬L′i and L′i is marked whenever we are within a
pure statement (outside such statements, both places are unmarked). At the
end of the pure block, we check the currently held locks against the snapshot.
If they agree, then we exit the pure statement via the end-pure transition; if
they disagree, we can reach the ERROR transition and place above. Again, this
transition is reachable if and only if the supposedly pure block leaves behind
some modified locks, and is therefore not pure.

We are guaranteed that our snapshots accurately reflect the current state of
the locks in the program with respect to the current thread (since snapshots do
not exist in the source program and are artifacts in our translation, we must take
care to prevent any inconsistencies where one thread operates on a lock while
another thread is taking a snapshot), since the places Li-held, Li-other, L′i and
¬L′i are all thread-local, and thread i cannot be manipulating locks while we are
checking its locksets.

Finally, to model the intuitive meaning that a pure statement can be skipped
altogether, an extra place is inserted at the beginning of each translated pure
statement that chooses precisely one path through the pure statement: either
ignoring it completely (via a transition directly to the end of the pure statement),
or traversing the body of the statement and the checks inserted along the way.

The net effect of this translation is to instrument every pure statement such
that an error location is reachable iff the statement violates the notion of purity
defined for Cap.

Break statements serve two purposes: they escape from infinite loops, and
they permit impure computation just before exiting a pure statement. To achieve
both of these, break statements must be enclosed by block statements, which
provide a jump target for the break. To finesse the edge case in the translation
(where a break statement is encountered with no surrounding block), we set
the initial jump target to ERROR; equivalently, we can syntactically dismiss any
such broken programs.

Break statements have no special responsibilities when exiting a loop, how-
ever, they must behave properly when exiting a pure block. There are two con-
ditions on normal exits from a pure block: no variable writes, and no changed
locks. We use a snapshot to handle the latter, and coloring rules for the former.
Accordingly, the translation of break statements simply skips over the snapshot
checking, and resets the color of the mark. Since the pure statement might be

32

contained within a loop, we must also reset the state of the snapshots so that
they are ready for the next iteration of the loop; this is achieved by taking the
OR of all L′i and ¬L′i pairs as input, which clears those marks. Finally, con-
trol jumps to the place following EXIT-PURE, which then flows out through
END-PURE to the rest of the program.

One consequence of this translation is that pure blocks cannot be analyzed
if they are syntactically nested within a given thread — this is our reason for
the earlier restriction.

5 Checking causal atomicity with purity

Again, we proceed in stages:

1. We define a notion of pure-causal atomicity.
2. We define a notion of causal purity.
3. We show for Pure-Sml that atomicities strictly stronger than A put restric-

tions on what operations can be performed.
4. We show the race detector is still sufficient.
5. We use the previous two results to show that sequencing two pure-causally

atomic statements, whose combination effect-checks as pure and atomic, is
itself pure-causally atomic.

6. We use this to show that our translation is correct, that is, for any program
which effect-checks, all atomic blocks will be pure-causally atomic.

5.1 Defining pure-causal atomicity

We need an analogue of the definition in Lemma 1 that includes purity. For
convenience, we restate the definition here:

Definition 9. A code block B = atomic S in program P is causally atomic if
and only if TRANS(P) does not have a trace tr for which the following condition
holds:

∃eT1 ∈λ START(S), eT2 , f
T ′
∈ E .T 6= T ′∧

(e1 � f � e2) ∧ (@eT ∈λ END(S).e1 � e � e2)

To incorporate purity, we note that the semantics of a pure block on successful
normal exit is the same as skip, and therefore any causal conflicts should not
count. Moreover, unless a normally-terminating pure block is modelled as skip,
our results about pure-causal atomicity are invalidated for that trace. Therefore
we add a second condition on the trace, that all pure blocks not take the tpurity
transition, and if they take tatomicity, that they not terminate normally. Formally,
our new definition is:

33

OR(pin, X; pout, pans; tid) = (T, F) where

T = {tx | x ∈ X}X is any set of places in the Petri net

F = {(pin, tx), (x, tx), (tx, pout), (tx, pans) | x ∈ X}
SNAPSHOT (pin, l; pout, pl,copy, pl̄,copy; tid) = (T, F) where

T = {tl,tid, tl̄,tid fresh(tid)}
F = {(pin, tl,tid), (ltid,held, tl,tid), (tl,tid, pout), (tl,tid, pl,copy), (tl,tid, ltid,held)),

(pin, tl̄,tid), (ltid,other, tl̄,tid), (tl̄,tid, pout), (tl̄,tid, pl̄,copy), (tl̄,tid, ltid,other)}
CHECK(pin, pl,copy, pl̄,copy, l; pout, pERR; tid) = (T, F) where

T = {thh, tuu, tuh, thu fresh(tid)}
F = {(pin, thh), (pl,copy, thh), (ltid,held, thh), (thh, pout), (thh, ltid,held)}∪
{(pin, tuu), (pl̄,copy, tuu), (ltid,other, tuu), (tuu, pout, (tuu, ltid,other))}∪
{(pin, thu), (pl,copy, thu), (ltid,other, thu), (thu, pERR), (thu, ltid,other}∪
{(pin, tuh), (pl̄,copy, tuh), (ltid,held, tuh), (tuh, pERR), (tuh, ltid,held)}

WIPE(pin; pout; tid;L) = (P, T, F) where

P = {pin,l, pout,l, pans,l | l ∈ L}
(Tl, Fl) = OR(pin,l, {snapl, snapl̄}; pout,l, pans,l; tid) for each l ∈ L

T = {twipe, tbreak fresh(tid)} ∪
⋃
l∈L

Tl

F = {(pin, twipe), (tbreak, pout)}∪

{(twipe, pin,l), (pout,l, tbreak), (pans,l, tbreak) | l ∈ L} ∪
⋃
l∈L

Fl

TRANSs : (Stmt, V, L, tid)→ ((P, T, F), pin ∈ P, out ⊂ T, break ⊂ T)

TRANSs(block s, V, L, tid) = ((P, T, F), pin, {tout} ∪ outs, ∅) where

((Ps, Ts, Fs), pin, outs, breaks) = TRANSs(s, V, L, tid)

P = Ps ∪ {pbreak fresh(tid)}
T = Ts ∪ {tout fresh(tid)}
F = Fs ∪ {(pbreak, tout)} ∪ {(t, pbreak) | t ∈ breaks}

TRANSs(acquire l, V, L, tid) = ((P, T, F), pin, {tacq l}) where

P = {pin fresh(tid), lopen ∈ L, ltid ∈ L, ltid,held ∈ L, ltid,other ∈ L}
T = {tacq l fresh(tid)}
F = {(pin, tacq l), (lother, tacq l), (tacq l, ltid), (ltid,other, tacq l), (tacq l, ltid,held)}

TRANSs(release l, V, L, tid) = ((P, T, F), pin, {trel l}) where

P = {pin fresh(tid), lopen ∈ L, ltid ∈ L, ltid,held ∈ L, ltid,other ∈ L}
T = {trel l fresh(tid)}
F = {(pin, trel l), (ltid, trel l), (trel l, lother), (ltid,held, tacq l), (tacq l, ltid,other)}

Fig. 10: Auxiliary widgets used to construct TRANS(pure s) and TRANSs(break).

34

TRANSs : (Stmt, V, L, tid)→ ((P, T, F), pin ∈ P, out ⊂ T, break ⊂ T)

TRANSs(pure s, V, L, tid) = ((P, T, F), pin, {tend pure}, break) where

((Ps, Ts, Fs), ps, outs, breaks) = TRANSs(s, V, L, tid)

If breaks 6= ∅ :

pwipe, pbreak fresh(tid)

(P ′, T ′, F ′) = WIPE(pwipe; pbreak; tid)

Pwipe = {pwipe, pbreak} ∪ P ′

Twipe = {tbreak fresh(tid)} ∪ T ′

Fwipe = {(t, pwipe) | t ∈ breaks} ∪ F ′ ∪ {(pbreak, tbreak)}
break = {tbreak}

Else

break = breaks

Pwipe = Twipe = Fwipe = ∅
P = Ps ∪ Pwipe ∪ {Lock Snap} ∪ {pin, p1, p2, p3, p4, p5 fresh(tid)}∪
{snapin,l, snapout,l, snapl, snapl̄, checkin,l, checkout,l fresh(tid) | l ∈ L}

(Tsnap,l, Fsnap,l) = SNAPSHOT (snapin,l, l; snapout,l, snapl, snapl̄; tid) and

(Tcheck,l, Fcheck,l) = CHECK(checkin,l, snapl, snapl̄, l; checkout,l, pERR; tid)

for each l ∈ L
T = {tbegin pure, tskip all, tsnap start, tsnap end, tcheck locks,

tcheck purity, tpureOK , tpureBad, texit pure, tend pure fresh(tid)} ∪ Fwipe∪⋃
l∈L

Tsnap,l ∪ Tcheck,l

F = {(pin, tbegin pure), (tbegin pure, p1), (p1, tskip all), (tskip all, p5)}∪
{(p1, tsnap start), (Lock Snap, tsnap start), (tsnap end, Lock Snap)}∪
{(tsnap start, snapin,l), (snapout,l, tsnap end) | l ∈ L}∪
{(tsnap end, ps)} ∪ {(t, p2) | t ∈ outs}∪
{(p2, tcheck locks), (Lock Snap, tcheck locks)}∪
{(tcheck locks, checkin,l), (checkout,l, tcheck purity) | l ∈ L}∪
{tcheck purity, p3), (p3, tpureOK), (p3, tpureBad), (tpureBad, pERR),

(tpureOK , p4), (p4, texit pure), (texit pure, Lock Snap),

(texit pure, p5), (p5, tend pure)} ∪ Fwipe ∪
⋃
l∈L

Fsnap,l ∪ Fcheck,l

TRANSs(break, V, L, tid) = ((P, T, {(pin, tbreak)}), pin, ∅, {tbreak}) where

P = {pin fresh(tid)} ∪ {pin,l, pout,l, pans,l | l ∈ L}
T = {tbreak fresh(tid)}

Fig. 11: Pseudocode of TRANS(Prog), TRANS(Exp) and TRANS(Stmt). All
“fresh(tid)” places and transitions are meant to be new and marked as part of thread
tid, even if their names have appeared before in P or T .

35

Definition 10. A trace through the translation of a program P is non-pure if
and only if the following condition holds:

∀e ∈ E .(∃C.e ∈ CURRENT(pure C, e) =⇒
@eTp ∈ CURRENT(pure C, e).λ(ep) = tpurity ∧

(∃eta ∈ CURRENT(pure C, e).λ(ea) = tatomicity

=⇒ ∃etb ∈ CURRENT(pure C, e).λ(eb) = tbreak))

A code block B = atomic S in program P is pure-causally atomic if and
only if TRANS(P) does not have a non-pure trace tr for which the following
condition holds:

∃eT1 ∈λ START(S), eT2 , f
T ′
∈ E .e1 � f � e2 ∧ @eT ∈λ END(S).e1 � e � e2

where T and T ′ denote distinct threads.

This definition trivially extends the previous one: for programs in Sml that
have no pure blocks, the distinction between all traces and non-pure traces
evaporates, so (ignoring the slight change in writing while loops) any causally
atomic program is also pure-causally atomic.

Lemma 8. If a code block B is causally atomic, then it is pure-causally atomic.

Proof. Obvious. ut

5.2 Causal purity

As with atomicity, we need a notion of purity defined in terms of behaviors over
the Petri net.

Definition 11. A code block B in program P is causally pure if and only if all
traces through TRANS(P) satisfy the following:

1. All acquired locks must be released on normal exit:

∀e ∈λ TRANS(B).(@b ∈ CURRENT(B, e).λ(b) = tbreak) =⇒
(λ(e) = tacq l ∧ @e′ ∈ CURRENT(B, e).e′ � e ∧ λ(e′) = trel l) =⇒

∃f ∈ CURRENT(B, e).(e � f ∧ λ(f) = trel l∧
@f ′ ∈ CURRENT(B, e).f � f ′ ∧ λ(f ′) = tacq l)

2. All released locks must be reacquired on normal exit:

∀e ∈λ TRANS(B).(@b ∈ CURRENT(B, e).λ(b) = tbreak) =⇒
(λ(e) = trel l ∧ @e′ ∈ CURRENT(B, e).e′ � e ∧ λ(e′) = tacq l) =⇒

∃f ∈ CURRENT(B, e).(e � f ∧ λ(f) = tacq l∧
@f ′ ∈ CURRENT(B, e).f � f ′ ∧ λ(f ′) = trel l)

36

3. No variable writes are permitted on normal exit:

∀e ∈λ TRANS(B).(λ(e) = tx ∧ tx is a variable write) =⇒
∃f ∈ CURRENT(B, e).e � f ∧ λ(f) = tbreak

Note that this definition requires that any impure actions require the pure block
to break and terminate, and that any infinite execution of the block must there-
fore not perform any impure actions.

From this definition we can show the following:

Lemma 9. Assume a program P ∈ Pure-Sml such that ` P : ok. Consider a
statement (or expression) s in P , and let N = TRANS(s). If Γ,X,⊥, Σ ` s :
⊥, Σ, then N is causally pure.

Proof. By induction on the structure of s:

– Case Stmt-Skip: s = skip. From the typing rule, we have the requested
condition. The translation of skip is a single transition that does not access
variables or locks, so is vacuously causally pure according to the definition.

– Case Stmt-Break: s = break. Immediate by the same reasoning as above.
– Case Stmt-Pure: s = pure s′. We know that ` P : ok, and therefore
Γ,X,⊥, Σ ` pure s′ : ⊥, Σ, which requires Γ,X ∩ UnstableV ar,⊥, Σ `
s′ : ⊥, Σ. By induction, we therefore have that TRANS(s′) is causally pure.
But TRANS(s)\TRANS(s′) involves only “administrative” transitions that
do not break, set locks, or access variables, and therefore cannot violate the
definition of causal purity. This gives the causal purity of TRANS(s).

– Case Stmt-Assign and Stmt-Assign-Race: s = x := exp. We cannot have
Γ,X,⊥, Σ ` s : ⊥, Σ at all, so the lemma is vacuously true.

– Case Stmt-Seq: s = s1; s2. We have Γ,X,⊥, Σ ` s1 : p1, Σ1 and Γ,X, p1, Σ1 `
s2 : p2, Σ2. Further, we must have Σ2 = Σ and p2 = ⊥, or else the lemma
is vacuously true; however, we know nothing about Σ1 and p1. Thus we
can’t inductively state anything about s1 or s2. Resorting to the definition
of causal purity, we have three conditions to check:
1. All acquired locks must be released on normal exit: Suppose that ∃e ∈λ

TRANS(s).λ(e) = tacq l ∧ @e′ ∈ CURRENT(s, e).e′ � e ∧ λ(e′) = trel l
as stipulated by the definition. By examining the TRANS construction,
we know s must contain acquire l. Moreover, we know that since e is
the first event to acquire or release l, that no other acquire or release
statements precede this one. Therefore we know that l /∈ Σ at the begin-
ning of s. Since all the rules except for Stmt-Release are monotonically
non-decreasing in Σ, it is obvious that if a statement acquires a lock l
and terminates normally (i.e. with no break statements), it must retain
that lock at exit. We know that s terminates normally with Σ locks held,
and that l /∈ Σ. Therefore we know s must release l, as this is the only
statement whose typing rule is not monotonic and can remove l from Σ.
(Note: the lock could be acquired and released multiple times, but the fi-
nal operation must be a release.) Examining TRANS again, we see that s

37

must contain release l on all paths following the acquire, or else l would
remain in Σ. Therefore ∃f ∈λ CURRENT(s, e).e � f ∧ λ(f) = trel l.
Moreover, since release must be the final operation on l, we know that
for at least one f , @f ′ ∈ CURRENT(s, e).f � f ′ ∧ λ(f ′) = tacq l, as
required.

2. All released locks must be reacquired on normal exit: This is symmetric
to the previous case.

3. No variable writes are permitted on normal exit: Suppose that ∃e ∈λ
TRANS(s).λ(e) = tx and tx is a variable write. We know from TRANS
that s must contain an assignment x := exp. From the typing rules, we
know that Γ,X, p,Σ ` x := exp : >, Σ for any p. Since all the rules
except for Stmt-Break are monotonic, it is obvious that if a statement
contains an assignment and terminates normally (i.e. with no break
statements), it must have purity >. We know that p2 = ⊥. Therefore,
there must be a break statement within s, as this is the only statement
whose typing rule is not monotonic and can return the purity of the
statement to ⊥. Moreover, some break statement must follow on every
path after the assignment, or else the resulting purity will remain at >.
Therefore, we must have some event f ∈ CURRENT(s, e).e � f∧λ(f) =
tbreak, as required.

– Case Stmt-Loop: s = loop s′. We have Γ,X, p,Σ ` s : p′, Σ, so by induction
we know that TRANS(s′) is causally pure. Since TRANS(s)\TRANS(s′) in-
voles only adding back-edges from the exit transitions of s′ to the entry place
of s, and does not construct arcs involving variables or locks, we are done.We
have Γ,X, p,Σ ` s : p′, Σ, so by induction we know that TRANS(s′) is
causally pure. Since TRANS(s)\TRANS(s′) involes only adding back-edges
from the exit transitions of s′ to the entry place of s, and does not construct
arcs involving variables or locks, we are done.

– Case Stmt-If: s = if exp s1 s2. Examining the translation of if statements,
we see that it constructs two transitions tt and tf , and recursively constructs
TRANS(exp), TRANS(s1), and TRANS(s2). Since none of the transitions
in an expression write variables, access locks or break, and clearly neither
do tt or tf , we have that s is causally pure if and only if TRANS(s1) and
TRANS(s2) are causally pure. Looking at the typing rules, we see that we
must have Γ,X, p,Σ ` s1 : p1, Σ and Γ,X, p,Σ ` s2 : p2, Σ. Further, p = ⊥
(because s typechecked using ⊥), and further we know p1 t p2 = ⊥, hence
p1 = p2 = ⊥. Therfore we can apply induction to both statements to prove
their causal purity, and are done.

– Case Stmt-Atomic: s = atomic s′. Examining the translation of atomic
statements, we see that it recursively constructs TRANS(s′), and so is causally
pure if and only if s′ is casually pure. Looking at its typing rule, we see that
s′ must typecheck under the same purities and locksets as s itself, and so by
induction we are done.

– Case Stmt-Acquire and Stmt-Release: s = acquire l or s = release l.
We cannot have Γ,X,⊥, Σ ` s : ⊥, Σ, so we are vacuously true.

ut

38

It follows that

Lemma 10. Assume a program P ∈ Pure-Sml such that ` P : ok. For every
statement s = pure s′ in P , TRANS(s) is causally pure.

Proof. By the typing rules for pure blocks, we know Γ,X∩UnstableV ar,⊥, Σ `
s′ : ⊥, Σ. By the lemma above, this means TRANS(s′) is causally pure. Of the
transitions in TRANS(s) \ TRANS(s′), none are accesses to variables or locks,
so the conditions for causal purity are vacuously satisfied. Therefore TRANS(s)
is causally pure as well. ut

5.3 Enumerating the operations of movers

Lemma 11. Consider a program P ∈ Pure-Sml such that ` P : ok, and a
statement s in P such that Γ ` s : a ↑ b and a, b @ A, and Γ,X, p,Σ ` s : p′, Σ′.
For an arbitrary trace, if there exists an event eT ∈λ TRANS(s) and there exists
another event fT

′
where T 6= T ′ such that that e≺· f or f ≺· e, then:

1. If a v R, then λ(e) = tx and Γ (x) ∈ Σ or λ(e) = tacq l; that is, e must be a
race-free variable access or a lock-aquire.

2. If a v L, then λ(e) = tx and Γ (x) ∈ Σ or λ(e) = trel l; that is, e must be a
race-free variable access or a lock-release.

Proof. The proof is almost identical to that of Lemma 2, but we add new cases
for the new constructs in Pure-Sml:

– Case Stmt-Pure: s = pure s′. Suppose e ∈λ TRANS(s′); by induction we
are done. Examining TRANS(s) \ TRANS(s′), we see that all transitions
are connected solely to thread-local places, and so are dependent only other
transitions in the current thread, so we are vacuously true.

– Case Stmt-Break: s = break. TRANS(s) contains no transitions that in-
teract with anything in other threads, so we are vacuously true.

– Case Stmt-Block: s = block s′. Suppose e ∈λ TRANS(s′); by induction we
are done. Examining TRANS(s)\TRANS(s′), we see that only one transition
is constructed and it does not interact with any transitions in other threads,
so we are vacuously true.

– Case Stmt-Loop: s = loop s′. Suppose e ∈λ TRANS(s′); by induction we
are done. Examining TRANS(s)\TRANS(s′), we see that only one transition
is constructed and it does not interact with any transitions in other threads,
so we are vacuously true. ut

5.4 Sufficiency of our race detector

We need to show that the race analysis we encoded above is sufficient, and we
do this in two steps:

39

Lemma 12. Consider a progam P ∈ Pure-Sml such that ` P : ok, and its
translation TRANS(P). Consider a statement s in thread T such that Γ ` s :
a ↑ b and Γ,Σ ` s : Σ′ ↑ Σ′′ occurs within the derivation of ` P : ok. For an
arbitrary trace, consider an arbitrary event eTe ∈λ END(s). Suppose that

∀eTs ∈λ START(s),es ∈ CURRENT(s, ee).∀l ∈ Σ.
∃acqTl ∈ E .acql � es ∧ λ(acql) = tacq l∧
@relTl .acql � rell � es ∧ λ(rell) = tTrel l

Then if λ(ee) 6= tbreak, then

∀fT ·� ee.∀l ∈ Σ′.∃acqTl .
acql � f ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � f ∧ λ(rell) = tTrel l

and if λ(ee) = tbreak, then

∀fT ·� ee.∀l ∈ Σ′′.∃acqTl .
acql � f ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � f ∧ λ(rell) = tTrel l

In other words, if a set of locks Σ is held before a statement s executes in the
Petri net, and s terminates normally yielding a new set of locks Σ′, then that
set of locks truly is held after s executes, and if it terminates abruptly yielding a
new set of locks Σ′′, then that set of locks truly is held after s executes.

Proof. By induction on Γ,Σ ` s : Σ′ ↑ Σ′′.

– Case Stmt-Atomic, Stmt-Assign, Stmt-Assign-Race, Stmt-Skip: None of
these operations produce any events that acquire or release locks, except
inductively on their substatements (if any). See the sequence case.

– Case Stmt-Seq: s = (s1; s2). We assume Γ,Σ ` s : Σ′s ↑ Σ′′s . By as-
sumption we know that ee exists, and that END(s) = END(s2) ∪ {tbreak ∈
TRANS(s1)}. If ee ∈λ TRANS(s1), then we know that s1 terminated abruptly.
By the typing rules, we must have Γ,Σ ` s1 : Σ′1 ↑ Σ′′1 , and Γ,Σ′1 ` s2 :
Σ′2 ↑ Σ′′2 , where Σ′′s = Σ′′1 ∩Σ′′2 , and Σ′1 is unconstrained. By induction, if s1
terminated abruptly it truly yields a lockset Σ′′1 ; when s terminates abruptly
in the same way, Σ′′1 ∩Σ′′2 clearly is held.
Otherwise, we know ee ∈λ END(s2), which means that s2 executes. By the
construction of TRANS(s), we know that s1 must have terminated in order
for s2 to execute; therefore, ∃e1 ∈ LAST(s1, ee).e1 ∈λ END(s1) ∧ λ(e1) 6=
tbreak, which in turn means that s1 terminated normally. Using the same
notation as above, now we know for certain Σ′1, and Σ′′1 is unconstrained.
By induction, we can therefore say that if some Σ′1 is held just prior to this
execution of s2, then Σ′2 will be held after it when terminating normally, and
Σ′′2 will be held after it when terminating abruptly. This in turn implies the
desired result.

40

– Case Stmt-If: Suppose s = if e s1 s2. Then TRANS(s) contains two tran-
sitions tt and tf , as well as the recursive constructions on the substate-
ments. Trivially, tt and tf are not trel l. Also trivially, none of the tran-
sitions in TRANS(e) are trel l; moreover, e always terminates normally.
This leaves only the substatements s1 and s2. We know that END(s) =
END(s1) ∪ END(s2).
Suppose ee ∈λ END(s1) (the other case with s2 is symmetric). We have
Γ,Σ ` s1 : Σ ↑ Σ′ from the typing derivation. Let es be as given in the
assumption. For all eT1 ∈λ START(s1) such that es � e1 � ee, we know
that Σ is held before e1 by the above reasoning. By induction, we know that
Σ is held when s1 terminates normally, and Σ′ is held when it terminates
abruptly; since END(s1) ⊆ END(s) this implies the desired result.

– Case Stmt-Loop: We have s = loop s′. Examining TRANS(s) we see that
END(s) = {tbreak ∈ TRANS(s′)}, and that s never terminates normally, and
that START(s) = {thead}. Now, we know ∃e1 ∈λ START(s′).es � e1 � ee.
By construction, either es≺· e1, or ∃e2 ∈λ END(s′).λ(e2) 6= tbreak ∧ e2≺· e1;
this latter case corresponds to iterating the loop. Since we know that every
evnet in a trace has a finite set of predecessors, we know that the loop
must have iterated only a finite number of times; we now use induction
over the number of iterations. If es≺· e1 we are trivially done, as the loop
has yet to execute even onces, and es does not modify Σ. Otherwise, the
loop has iterated n − 1 times and we are checking the nth iteration. From
the typing rules we are guaranteed Γ,Σ ` s′ : Σ ↑ Σ′, and we know the
first n − 1 iterations terminated normally. Therefore we effectively have a
sequence s′; s′; · · · ; s′, and the same logic shows that if Σ was held before the
last iteration of the loop, then Σ will be held if the last iteration terminates
normally, and Σ′ will be held if it terminates abruptly. This shows that if
the loop iterates n times, the correct locksets will truly be held. Finally,
we know that the last iteration of the loop terminates abruptly (because
END(s) only contains tbreak transitions), and we know we are left with Σ′

held after abrupt termination. The lockset for normal termination, Σ′′, is
completely unconstrained.

– Case Stmt-Acquire: We have Γ,Σ ` acquire(l) : Σ ∪ { l } ↑ Σ′′. There is
exactly one transition in TRANS(s), so START(s) = END(s) = {tTacq l};
moreover, es = ee. Σ′′ is completely unconstrained. For a lock l′ ∈ Σ′:
• If l′ = l, then we trivially satisfy the condition above: we let acqTl = eTs .
• If l′ 6= l, then we know from the premise and from the observation that
es = ee that

∃acqTl′ .acql′ � ee ∧ λ(acql′) = tTacq l′∧
@relTl′ .acql′ � rell′ � ee ∧ λ(rell′) = tTrel l′

Since s doesn’t touch l′, we must have that this holds for all fT ·� eTe , as
desired.

– Case Stmt-Release: We have Γ,Σ ` release(l) : Σ \ { l } ↑ Σ′′. By the
same argument as above, since s doesn’t touch l′ for l′ 6= l, we satisfy the
condition.

41

– Case Stmt-Block: s = block s′. Examining TRANS(s), we see that it con-
structs one new transition that does not modify locksets, that START(s) =
START(s′), and that END(s) = END(s′) \ {tbreak ∈ TRANS(s′)} — blocks
cannot terminate abruptly. Inductively, we know that Γ,Σ ` s′ : Σ′ ↑ Σ′′.
Therefore, no matter how s′ terminates, we are guaranteed that Σ′ ∩Σ′′ is
held, exactly as required. The lockset for abrupt termination of s is com-
pletely unconstrained.

– Case Stmt-Break: s = break. Examining TRANS(s) we see that it only
ever terminates abruptly, and does not modify any locks in the process. So
we are guaranteed that Σ will hold on abrupt termination; the lockset for
normal termination is completely unconstrained.

– Case Stmt-Pure: s = pure s′. Examining TRANS(s), we see that it con-
structs several transitions, none of which manipulate locks (none of them are
tacq or trel, and none of them touch the shared lock places), and recursively
constructs TRANS(s′). By induction we have Γ,Σ ` s′ : Σ′ ↑ Σ′′, and we
are done.

ut

Lemma 13. Consider a program P ∈ Sml such that ` P : ok. Then for every
statement s such that Γ,Σ ` s : Σ1 ↑ Σ2 appears in the derivation of ` P : ok,
if

∀eT ∈λ START(s).∀l ∈ Σ.∃acqTl .
acql � e ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � e ∧ λ(rell) = tTrel l

then for every statement (or expression) s′ that appears within s, such that
Γ,Σ′ ` s′ : Σ′1 ↑ Σ′2 appears in the derivation of ` P : ok we have the same
property:

∀eT ∈λ START(s′).∀l ∈ Σ′.∃acqTl .
acql � e ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � e ∧ λ(rell) = tTrel l

Proof. Expressions do not change locksets, so if a lockset Σ holds at the begin-
ning of an expression exp, it holds at the beginning of every subexpression of
exp. Therefore we need only examine statements. By induction on the structure
of s:

– Case s = skip: vacuously true.
– Case s = break: vacuously true.
– Case s = x := exp: Looking at TRANS(s), we see that START(s) =

START(exp) and Σ′ = Σ, so by induction we are done.
– Case s = if c s1 s2: Looking at TRANS(s), we see that START(s) =

START(c), so Σ holds at the beginning of c. Since the transitions tt and tf
do not modify locks, we know that Σ holds at the beginning of s1 and s2 as
well; by induction, we are done.

42

– Case s = acquire l or s = release l: vacuously true.
– Case s = atomic s′: Since START(s) = START(s′), by induction we are

done.
– Case s = block s′: Since START(s) = START(s′), by induction we are

done.
– Case s = pure s′: Looking at TRANS(s), we see that we construct several

transitions, none of which manipulate locks. So ∀e ∈λ START(s).∀e′ ∈λ
START(s′).∀fT .e � f � e′.Σ is held. Therefore Σ is held at the beginning
of s′, and by induction we are done.

– Case s = (s1; s2): Since START(s) = START(s1), by induction we are done
with s1. By the typing rules, we must have that Γ,Σ ` s1 : Σ′1 ↑ Σ′′1 and
Γ,Σ′1 ` s2 : Σ′2 ↑ Σ′′2 . If an event e2 exists in START(s2), then s1 must have
terminated normally. We can pick any e1 ∈ LAST(s1, e2).λ(e1) 6= tbreak,
which implies e1≺· e2, and by Lemma 12, we know that Σ1 is held just after
e1, which is to say, just before e2, so by induction we are done with s2.

– Case s = loop s′: The transition thead obviously does not modify any locks,
so we need a second level of induction here, since the body s′ can execute
multiple times. We must show that if the loop has run for a finite number of
iterations (n), then on the n+1 execution of c, the locks Σ are held just prior
to the start of c. It is clear that the set {e ∈λ START(s′)} = {e0, e1, . . .} is
the totally ordered set of events corresponding to each iteration of s′: event
en occurs when the loop has executed n times. Let fn≺· en be the event just
prior to en in the same thread. By induction on n:
• Case n = 0: The condition has not executed at all, therefore λ(f0) =
thead, and so the same locks Σ are held before e0 as were held at the
start of the loop.

• Case n > 0: Suppose the loop has executed n times, and we’re about to
execute en. Then fn ∈λ END(s′) and fn≺· en. By induction, the locks
Σ are held before en−1. Then by Lemma 12, some lockset Σ′ is held
after fn, and by the Stmt-Loop rule, we know that Σ′ = Σ. Therefore,
the lockset Σ is held just prior to en as well, as required. Moreover,
we know that s′ terminates normally, because we supposed event en
exists. Therefore at every iteration, the lockset Σ is held just prior to its
execution.

ut

The key corollary to this is

Lemma 14. Consider a program P ∈ Pure-Sml such that ` P : ok. Then for
every statement s such that Γ,Σ ` s : Σ′ ↑ Σ′′ appears in the derivation of
` P : ok, we know that

∀eT ∈λ START(s).∀l ∈ Σ.∃acqTl .
acql � e ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � e ∧ λ(rell) = tTrel l

43

Proof. We know P = s1||s2|| . . . ||sn. For every statement si, we know Γ, ∅ ` si :
Σ′ ↑ Σ′′, and we know all threads do start with no locks held in the Petri net,
we can apply the above lemma. ut
We can therefore conclude

Lemma 15. Our race detector is sufficient.

Proof. Consider two accesses to variable x in different threads that are deter-
mined to be race-free, as required by the definition of sufficient race detectors;
let s and t be the primitive statements or expressions in which these accesses
occur, and T and T ′ be their threads respectively. By Lemma 14, we know that

∀eT ∈λ START(s).∀l ∈ Σ.∃acqTl .
acql � e ∧ λ(acql) = tTacq l∧
@relTl .acql � rell � e ∧ λ(rell) = tTrel l

(and similarly for statement t) and in particular, since the accesses are race-free,

∀eT ∈λ START(s).∃acqTΓ (x).

acqΓ (x) � e ∧ λ(acqΓ (x)) = tTacq Γ (x)∧

@relTΓ (x).acqΓ (x) � relΓ (x) � e ∧ λ(relΓ (x)) = tTrel Γ (x)

We can conclude that acqTΓ (x) � eTs , for the specific event λ(eTs) = tTx that

accesses x in statement s, and similarly acqT
′

Γ (x) � eT
′

t for the event λ(eT
′

t) =

tT
′

x that accesses x in statement t. Assume that eTs � eT
′

t — they must be
ordered since they access the same variable (the opposite ordering is symmetric).
Therefore acqTΓ (x) � eTs � eT

′

t . We know that acqTΓ (x) � acqT
′

Γ (x) or vice versa,

since they access the same lock. We proceed by cases to determine when acqT
′

Γ (x)

can occur (a symmetric argument holds when thread T ′ starts first):

1. acqT
′

Γ (x) � acq
T
Γ (x) � e

T
s � eT

′

t . This is a contradiction: from the line above we

know that the lock Γ (x) is continually held from acqT
′

Γ (x) until eT
′

t (since no
release event happens between these two events), therefore the place Γ (x)open
is unmarked, so therefore acqTΓ (x) cannot happen here.

2. acqTΓ (x) � acqT
′

Γ (x) � eTs � eT
′

t . This is a contradiction for the same reason:
we know that the lock Γ (x) is continually held from acqTΓ (x) until eTt , so

therefore acqT
′

Γ (x) cannot happen here.
3. acqTΓ (x) � eTs � acqT

′

Γ (x) � eT
′

t . This is the interesting case. It obeys all the
constraints we know so far, however, the lock Γ (x) is still held by thread T
until released. The only way for these four events to occur in this order is
for there to be a fifth event in thread T that releases the lock:

acqTΓ (x) � e
T
s � relTΓ (x) � acq

T ′

Γ (x) � e
T ′

t

where λ(relTΓ (x)) = tTrel Γ (x). Now we have precisely the events required by
our definition of sufficient race conditions: the last four events above.

44

4. acqTΓ (x) � eTs � eT
′

t � acqT
′

Γ (x). Again we have a contradiction: we know

acqT
′

Γ (x) � e
T ′

t .

Therefore, whenever our race detector concludes that two accesses are race-free,
we are guaranteed two events, one in each thread, that happen between the two
variable accesses, as required by our definition of sufficient race detectors. ut

5.5 Pure-causal atomicity of sequenced statements

Lemma 16. Assume a program P ∈ Pure-Sml such that ` P : ok. Consider
two statements (or expressions) s1 and s2 found in P , both in the same thread
T , and let N1 = TRANS(s1) and N2 = TRANS(s2) be subnets of TRANS(P)
that result from the translation of the two statements. Assume that:

1. Γ ` s1 : a1 ↑ b1 and Γ ` s2 : a2 ↑ b2, and (a1; a2) v A, (a1; b2) v A, and
b1 v A.

2. N1 and N2 are pure-causally atomic within TRANS(P).
3. ∀t1 ∈ END(s1).(t1 6= tbreak =⇒ ∃t2 ∈ START(s2).t•1 ∩ •t2 6= ∅) in the full

Petri net, that is, that N2 is “immediately after” N1 in TRANS(P) when s1
terminates normally.

Then N1 ∪N2 is pure-causally atomic.

Proof. We want to show that for every possible non-pure trace,

@eT2 ∈ TRANS(s1) ∪ TRANS(s2), hT
′′′
∈ E .

(estart � h � e2) ∧ @eTend ∈λ END(s1; s2).(estart � eend � e2)

where as above, eTstart ∈λ START(s1; s2) and eTend ∈λ END(s1; s2), and hT
′′′

is
an event in some thread T ′′′ 6= T .

This is where our definition of causal purity is crucial: we are guaranteed
that every pure block is causally pure (by our hypothesis that ` P : ok and
Lemma 10), which means that any possible event which can interfere with
pure-causal atomicity (any impure action, and possibly any pure action on an
abruptly-terminating trace) will exist in a non-pure trace, since it must be on a
path that continues to a break.

Our condition is in nearly the exact same form as the definition of causal
atomicity, except that here we are only considering a subset of all traces to find
violations of pure-causal atomicity, and the ending set of events END(s1; s2) is
slightly different. It should seem intuitive, then, that pure-casual atomicity is
more permissive than causal atomicity, since there are fewer opportunities to
violate it. We can now essentially repeat the proof of Lemma 7, changing only
the hypothesis to use the appropriate judgments:

By inspecting the operator (;) and by assumption 1, we see that a1 v R
or a2, b2 v L (or both). We have that s1 and s2 are pure-causally atomic by

45

assumption 2. From the definition of pure-causal atomicity, we therefore know
that for any possible trace,

@uT2 ∈ TRANS(s1), fT
′
∈ E .(uTstart � fT

′
� uT2) ∧ ¬(uTstart � uTend � uT2)

@vT2 ∈ TRANS(s2), gT
′′
∈ E .(vTstart � gT

′′
� vT2) ∧ ¬(vTstart � vTend � vT2)

where uTstart ∈ START (s1) and uTend ∈ END(s1) (resp. vTstart and vTend) corre-
spond to transitions in the START and END sets in the translation of s1 (resp.
s2) and event fT

′
(resp. gT

′′
) is not in the same thread T .

Suppose that s1 terminates abruptly. Then there are no events e2 ∈λ TRANS(s2)
at all, and so any trace that violates the pure-causal atomicity of s1; s2 must vi-
olate the pure-causal atomicity of s1 alone, which is a contradiction. Therefore,
s1 must terminate normally, and s2 must execute. This implies END(s1; s2) =
END(s2). We do not care about the termination behavior of s2, as we are guar-
anteed (since it is a non-pure trace) that any pure-causal atomicity violations
we may observe are valid.

We therefore want to show that for every possible trace,

@eT2 ∈ TRANS(s1 ∪ TRANS(s2)), hT
′′′
∈ E .

(estart � h � e2) ∧ @eTend ∈ END(s2).(estart � eend � e2)

where as above, we define the events eTstart ∈ START(s1) and eTend ∈ END(s2),
and hT

′′′
is an event in some thread T ′′′ 6= T .

We proceed by contradiction. Suppose there existed some trace in which such
an event hT

′′′
did exist (and an event eT2 that follows it). Such an event would

satisfy
(estart � h � e2) ∧ ¬(estart � eend � e2)

We know that LAST(s1, h) is not empty, because by assumption, estart � h,
so it must be that either estart ∈ LAST (s1, h) or else some other event eTL exists
such that estart � eL � h, and eL ∈ LAST(s1, h).

We know that FIRST(s1, h) is empty, because otherwise we could violate the
atomicity of TRANS(s1):

∃eTF ∈ FIRST(s1, h).estart � h � eF

which is a contradiction. So h interacts with something in LAST(s1, h) and
nothing after it in TRANS(s1).

We know that e2 must be in TRANS(s2), since we know the set FIRST(s1, h)
is empty, and no other events exist besides those in TRANS(s1) and TRANS(s2).
Therefore, either e2 ∈ FIRST(s2, h) or else some other event eTF exists such that
h� eF � e2, and hence either way, FIRST(s2, h) is not empty.

We know that LAST(s2, h) is empty, because otherwise we could violate the
atomicity of TRANS(s2):

∃eTL ∈ LAST(s2, h).eL � h � e2

46

which is a contradiction. So h interacts with something in LAST(s2, h) and
nothing before it in TRANS(s2).

Therefore it must be that

∃uT ∈ LAST(s1, h), vT ∈ FIRST(s2, h).u � h � v

In other words, if an event h exists at all, it must happen between the last
interfering event in TRANS(s1) and the first interfering event in TRANS(s2)
(based on the two sets above that are non-empty). Additionally

@w ∈ TRANS(s1 ∪ TRANS(s2)).

∀uT ∈ LAST(s1, h), vT ∈ FIRST(s2, h).u � w � v

In other words, there are no other interfering events that matter in the trans-
lations of the two statements between those identified before (based on the two
sets above that are empty).

It is possible that h is not unique, that is, there might be multiple events
causally between u and v (for any pair of events u and v as above). Therefore,
define events hT

′′′

1 and hT
′′′

2 , not necessarily distinct from hT
′′′

, such that

uT ≺·hT
′′′

1 � hT
′′′
� hT

′′′

2 ≺· vT

Now we have our contradiction. Suppose s1 is a right-mover. Then the event u
must either be a lock acquire or a race-free variable access (by Lemma 11 above),
and so must event h1 (since u≺·h1, which can only happen if both events access
the same resource).

If both events are lock acquires of some lock l, then we have an immediate
contradiction, since it is not possible for two threads to acquire the same lock
simultaneously. In our translation into Petri nets, a lock-acquire operation moves
a mark from lopen to lT . Any other lock-acquire operations on the same lock l
are not enabled until the lock is released and the mark is restored to lopen. How-
ever, we have that u≺·h1, so no lock-release event occurs before h1 supposedly
happens. (A similar contradiction exists if h1 is a lock release; thread T ′′′ can’t
release a lock held by thread T .)

If both events access a variable (and clearly one must be a variable write, or
else there is no conflict) then we appeal to the race-freedom of the access. We
assumed the race detector was sound, so therefore both events must be race free.
We also assumed that it was sufficient, so we know some lock l must be held
for all accesses to this variable, or else there may be a race condition. So there
must be some event in thread T which acquires lock l, and similarly there must
be some event in thread T ′′′ that acquires the same lock. Since we assumed that
u≺·h1, and u doesn’t release the lock (it’s a variable access, and does nothing to
locks), h1 must happen after the lock is released. We assumed that s1 is a right
mover, which means it cannot release the lock. So any further events that interact
with lock l must occur in TRANS(s2) (by assumption 3, since TRANS(s2) is
“immediately after” TRANS(s1) in the overall net—no other events in thread

47

T can intervene). Clearly, the first such event must be to release the lock (since
it is currently held), and this could happen before or after event v. But the lock
must be held for event v, since it is a race-free access, so if the lock were released,
it must be reacquired before event v. But this is not atomic, which contradicts
our assumption that s2 effect-checked as atomic. Therefore, the lock l must be
continuously held between u and v. We must have therefore that v � h1, but
this contradicts our assumption that h � v. We can conclude that if s1 is a
right-mover, then no event h can occur during s1, between s1 and s2, or during
s2, and therefore that the union N1 ∪N2 is causally atomic.

A symmetric argument holds when s2 is a left-mover. ut

5.6 Pure-causal atomicity encompasses effect-based abstract
atomicity

We can now state the main theorem of this section, which shows that pure-causal
atomicity is at least as strong as effect-based pure-atomicity.

Theorem 2. For every program P ∈ Pure-Sml where ` P : ok, then all atomic
blocks in P are pure-causally atomic when translated into Petri nets.

Proof. Consider an arbitrary expression e ∈ P within an arbitrary atomic block.
Expressions never terminate abruptly; for all intents and purposes they implicitly
have an abrupt atomicity of ⊥. Further, either e is entirely contained within a
pure block or it is not: trivially, expressions cannot themselves contain pure
blocks (which are statements), so all events in TRANS(e) are either causally
within a pure block or not. We consider the two cases:

– If it is not contained within a pure block, then we know that Γ,Σ ` e : a
and a v A, by the rules for atomic blocks. By Theorem 1 and Lemma 8, we
are done.

– If it is in a pure block, then we know that Γ,Σ ` e : a and a v A by the
rules for pure blocks. By the same reasoning as above, we conclude that e is
causally atomic, and therefore pure-causally atomic.

Consider an arbitrary statement s ∈ P within an arbitrary atomic block. We
assume that all of P effect-checks, including all atomic and pure blocks. We
wish to show that if Γ ` s : a ↑ b and Γ,X, p,Σ ` s : p′, Σ′, and a, b v A, then
TRANS(s) is pure-causally atomic in the net resulting from the translation of
P .

– Case Stmt-Skip: s = skip. Trivially, the translation of this statement is
pure-causally atomic: there is only one transition in its translation.

– Case Stmt-Break: s = break. Trivially, the translation of this statement is
pure-causally atomic: there is only one transition in its translation.

– Case Stmt-Seq: s = s1; s2. We know that Γ ` s : a ↑ b and a, b v
A. We therefore know that Γ ` s1 : a1 ↑ b1, Γ ` s2 : a2 ↑ b2, and
(a1; a2) v A and (b1 t (a1; b2)) v A by the typing rules. This implies

48

that a1, a2, b1, b2, (a1; b2) v A. We have from induction that TRANS(s1)
and TRANS(s2) are pure-causally atomic. This meets all the criteria for
Lemma 16, and so we are done.

– Case Stmt-Loop: s = loop s′. We know that s′ is pure-causally atomic by
induction; it remains to show that the loop is pure-causally atomic. However,
the translation of loops merely sequences the loop body with itself, hence
using the preceding lemma, we are done.

– Case Stmt-Pure: s = pure s′. We know from Lemma 10 that s′ is causally
pure. From the typing rule, we know Γ ` pure s′ : B ↑ b, Γ ` s′ : a′ ↑ b, and
a′ v A. But by our hypothesis that ` P : ok, we also know b v A. Therefore
we can conclude that s′ is pure-causally atomic. Looking at TRANS(s) \
TRANS(s′), we see that we construct many transitions (the snapshots and
the checkpoints, and administrative transitions), all of which are connected
only to places in the current thread, to the locks, or to the place LockSnap;
in other words, they induce no causal dependencies with any other threads.
Therefore, if there existed a trace that violated the pure-causal atomicity of
s, it must violate the pure-causal atomicity of s′, which is impossible.

– Case Stmt-Assign and Stmt-Assign-Race: s = x := exp. The translation
of this expression decomposes into two subnets: the TRANS(exp), and a
transition tTx that accesses the variable x. We know that TRANS(e) is pure-
causally atomic. Therefore, if there exists an event fT

′
that witnesses the

non-atomicity of TRANS(s), it must satisfy

∃eT1 ∈λ START(s), eT2 ∈λ E .
(e1 � f � e2) ∧ (@eTend ∈λ END(s).e1 � eend � e2)

By examining TRANS(s), we see that END(s) = {tTx } and START(s) =
START(exp). Moreover, we know that e2 /∈ CURRENT(exp, e1), since if it
were, then @eend ∈ END(exp).eend � e2, and then f would witness the non-
atomicity of TRANS(exp), which is impossible by assumption. Therefore
we must have CURRENT(s, e1) \ CURRENT(exp, e1) = {e2}. But then
∃eend ∈ END(s).eend � e2, which contradicts our assumption about f .

– Case Stmt-If: s = if exp s1 s2. The translation of s decomposes into three
subnets, one per subexpression, as well as two extra transitions tt and tf
indicating which branch of the if to take. By induction, we assume that each
of these subnets is pure-causally atomic. It is trivial to see that “grouping”
tt with TRANS(s1) and tf with TRANS(s2) does not affect their pure-
causal atomicity: since these transitions are immediately before only the
entry points of TRANS(s1) and TRANS(s2), any event f that could witness
the non-atomicity of the grouping would witness the non-atomicity of the
subexpressions themselves. By assumption, Γ ` s : a ↑ b and a, b v A.
Following the inference rule, we have Γ ` e : ae and Γ ` si : ai ↑ bi. We
therefore know that (ae; (a1 t a2)) v a and (ae; (b1 t b2)) v a. This meets
all the requirements for Lemma 16, so we apply it twice, with e and s1 and
then with e and s2, and so we are done.

49

– Case Stmt-Atomic: s = atomic s′. We know TRANS(s) = TRANS(s′), so
by induction we are done.

– Case Stmt-Acquire and Stmt-Release: s = acquire l or s = release l.
Trivially, the translation of this statement is pure-causally atomic: there is
only one transition in its translation.

– Case Stmt-Block: s = block s′. We know that s′ is pure-causally atomic by
induction. Examining TRANS(s) \ TRANS(s′), we see that we construct
one new transition tout to handle any break statements within s′, and
connect each of them to this tout. We therefore know that if tout fires,
that ebreak≺· eout≺· ein, where λ(ebreak) = tbreak is the event when the
break statement executes; λ(eout) = tout is the event of tout firing, and
ein is the next event in this thread (the start of the statement following s).
So if there existed an event f that violated the atomicity of s, such that
ebegin � f � eout, it must be that ebegin � f � ebreak, which violates the
atomicity of s′, leading to a contradiction. Hence s is pure-causally atomic
as well.

ut

6 Implementing the definition of pure-causal atomicity

As in [1], we define four primitive colors describing the atomicity state:

– Achromatic (A) — default “non”-color
– Blue (B) — begin atomic block
– Yellow (Y) — another thread saw a blue mark
– Red (R) — atomicity or purity was violated

We also define four primitive colors describing the purity state:

– Not pure (n) — default “non”-color
– Pure ok (o) — while checking purity, beginning a pure block, without yet

performing a mutation
– Pure bad (b) — while checking purity, within a pure block, but have per-

formed a mutation
– Must break (m) — while checking atomicity, within a pure block, and must

therefore break

Our colors will be the set of pairs {A,B, Y,R} × {n, o, b,m}. We define a
lattice structure over these component-wise, with A @ B @ Y @ R and n @ o @
b @ m. Define the projection functions atom(x) and pure(x) to extract the first
and second components of a color, respectively. To define the color transitions,
we need rules that are backwards-compatible with the existing approach: if a
program doesn’t use any pure blocks, the analysis ought to be identical to that
in [1]. We note that each widget defined in our translation uses a “program
counter,” a token that passes from place to place and uniquely identifies the
current execution point of the current thread. (This place was named pin in
figure 4 of [1].) We distinguish this input as special, in the translation rules that

50

follow, and denote by pct the current program counter of thread t; there are T
threads in total.

Accordingly, we define the following “boring” rules:

– In the OR widget, each transition shifts pct from input to output unchanged,
and shifts the token from the active input place to the output place un-
changed. These two tokens could be of different colors.

– On lock acquire and release operations, the token is moved from Li-other to
Li-held (or vice versa) unchanged.

– The SNAPSHOT widget leaves its input token colors unchanged.
– The CHECK widget leaves the pct color unchanged, and may place (R,n) on
ERR. The anonymous transitions leave their inputs unchanged; the SNAP-
SHOT widget leaves its inputs untouched. The two successful AND tran-
sitions produce the result of the pct input; the two error AND transitions
produce (R,n).

– All bookkeeping transitions leave their input colors alone.

All other transitions are interesting, in that they involve interactions with the
variable or lock places. For these we define the following rules:

– When entering a pure block, we have three mutually-exclusive choices of
paths. We can choose to skip over the entire pure block, jumping directly
to the end of the block and continuing execution. This models executions
where the pure block terminates normally or never terminates, and produces
no side effects; we therefore leave the color at n and continue at the end of the
block. We can choose to check purity, tracing through the block and ensuring
that all writes are post-dominated by a break and all lock manipulations
are undone on normal exit. To do this we set the color to o, and continue
through the block. Finally, we can choose to check atomicity, tracing through
the block and checking for interactions with other threads. To do this we set
the color to m. If the pure block never breaks on a particular trace, then we
simply “get stuck”; instead we should have chosen to model the behavior of
the block as a skip.

– On variable reads in thread t, the purity value for vt and pct is unchanged.
– On variable writes in thread t, we update the purity value for vt and for pct:

pure(pct) := pure(vt) :=

{
b if pure(vt) = o ∨ pure(pct) = o

pct otherwise

The purity colors of other variables (vk where k 6= t) are unchanged.
– On lock manipulations, writes and reads, we update the colors of all inputs:

If pure(pct) = b or pure(pct) = o, then we leave the colors alone, as we’re
not checking for atomicity. Otherwise, we use the same coloring rules as for
the causal atomicity case.

– The last remaining special case is the transitions exiting a pure block. If we
are in purity-checking mode, then we require that the color be o on normal
exit; on both normal and abrupt exit we clear the mark on ERR. This

51

ensures that no further atomicity checking is attempted on this trace, since
we may have missed an atomicity violation while examining this block solely
for purity. If we are in atomicity-checking mode, however, then we get stuck
on normal termination, and only abrupt termination can continue execution.
(The transition that skips the entire block bypasses this restriction, so we
can model both behaviors of the pure block correctly.)

– We add a transition vk@(R,n) → ERR, for every variable place vk (i.e.
every variable v and every thread k). (More precisely, we add transitions
with this effect, but that are 1-safe.)

Checking for atomicity and purity simultaneously simply asks whether the
ERROR transition is reachable with a red mark.

References

1. Farzan, A., Madhusudan, P.: Causal atomicity. In: Computer Aided Verification.
(2006) 315–328

2. Flanagan, C., Freund, S.N., Qadeer, S.: Exploiting purity for atomicity. IEEE
Transactions on Software Engineering 31(4) (2005) 275–291

3. Flanagan, C., Qadeer, S.: Types for atomicity. In: TLDI ’03: Proceedings of the
2003 ACM SIGPLAN international workshop on Types in languages design and
implementation, New York, NY, USA, ACM Press (2003) 1–12

52

