
CUDA overview Earley parsing Gotchas Future work

Experiences coding non-uniform parallelism

using the CUDA GPGPU architecture

Benjamin Lerner
with Trevor Jim and Yitzhak Mandelbaum

University of Washington Computer Science and Engineering

AT&T Research

NJPLS, August 28, 2008

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 1 / 26

CUDA overview Earley parsing Gotchas Future work

State of the art

I Intel CPU:
8 threads, $1500

I Graphics card:
15000 threads, $500

I Intuitive, affordable
parallelism: priceless

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 2 / 26

CUDA overview Earley parsing Gotchas Future work

State of the art

I Intel CPU:
8 threads, $1500

I Graphics card:
15000 threads, $500

I Intuitive, affordable
parallelism: priceless

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 2 / 26

CUDA overview Earley parsing Gotchas Future work

State of the art

I Intel CPU:
8 threads, $1500

I Graphics card:
15000 threads, $500

I Intuitive, affordable
parallelism: priceless *#@$!

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 2 / 26

CUDA overview Earley parsing Gotchas Future work

State of the art

2003 2004 2005 2006 2007 2008

Brook GPU
(Stanford)

Cell
(Sony)

Radeon, StreamSDK
(AMD)

BSGP
(MSR Asia)

Larabee
(Intel)

OpenCL
(Apple)

GeForce, CUDA SDK
(NVidia)

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 3 / 26

CUDA overview Earley parsing Gotchas Future work

State of the art

2003 2004 2005 2006 2007 2008

Brook GPU
(Stanford)

Cell
(Sony)

Radeon, StreamSDK
(AMD)

BSGP
(MSR Asia)

Larabee
(Intel)

OpenCL
(Apple)

GeForce, CUDA SDK
(NVidia)

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 3 / 26

CUDA overview Earley parsing Gotchas Future work

CUDA overview
Runtime
Organization
Limitations

Motivating example: Earley parsing
The algorithm
Parallelizing the algorithm
Challenges for parallelization

Common gotchas and workarounds
Limited memory
Pointer regions
Debugging
Code reuse

Welcome Future Improvements

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 4 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Typical CUDA Program

Most programs are a mix:
I Sequential setup/result

processing

I Very parallel, uniform
work (kernels)

I Examples:
image rendering,
physics simulations,
large matrix operations

Goal: offload parallel work to
device

Host

Device

Host

Device

Host

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 5 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Typical CUDA Program

Most programs are a mix:
I Sequential setup/result

processing

I Very parallel, uniform
work (kernels)

I Examples:
image rendering,
physics simulations,
large matrix operations

Goal: offload parallel work to
device

Host

Device

Host

Device

Host

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 5 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Runtime model

Each CUDA kernel specifies a
I grid

I of blocks

I of threads

Each kernel invocation specifies
the grid and block sizes

Host

Device

Block (0,0)

Block (0,1)

Block (1,0)

Block (1,1)

Block (2,0)

Block (2,1)

Grid 0

Host

Device

Block (0,0)

Block (0,1)

Block (0,2)

Block (1,0)

Block (1,1)

Block (1,2)

Grid 1

Host

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 6 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Memory organization

Five levels of memory available on device:
..
.

..
.

..
.

. . .

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 7 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Memory organization

Five levels of memory available on device:
..
.

..
.

..
.

thread-local registers

. . .

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 7 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Memory organization

Five levels of memory available on device:
..
.

..
.

..
.

thread-local registers

. . .

16KB shared

Declared at kernel call,
unreachable from host

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 7 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Memory organization

Five levels of memory available on device:
..
.

..
.

..
.

thread-local registers

. . .

16KB shared

1GB global

64KB constant cache

512MB texture cache

Declared at kernel call,
unreachable from host

︸ ︷︷ ︸
Initialized, readable from host

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 7 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Parallel execution

I Blocks execute independently

I Threads grouped within blocks:
32 threads = 1 warp
16 threads = 1 half-warp

I SIMD-style parallelism per
half-warp, when possible:

I “Safe” memory accesses are
coalesced, execute in unison

I Memory conflicts, branched
control force serialization

Coalesced warp execution

half-warp 0 half-warp 1

Serialized warp execution

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 8 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Synchronization primitives

Between threads in a block:

I Barrier synchronizing all threads

I Atomic operations on shared memory

Between blocks in a kernel:

I Atomic operations on global data

Between kernels on the host:

I Barrier until kernel finishes

Note: no condition variables, semaphores, etc. as primitives
. . . encourages certain style of coding

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 9 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Memory Limitations

I All memory management is manual

I Choice of memory location is crucial
I 16KB? Really?

I Leads to manual “paging” schemes

I Manually contort code for coalesced memory
accesses

I Crucial to performance
I Confusing to get right

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 10 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

Parallelism Limitations

I No nested parallelism: can’t launch a kernel
within a kernel

I useful for different granularities of parallelism
I . . . can sometimes manually fuse two or more kernels

I Synchronization primitives are difficult to use
I Thread barriers and conditional branches don’t mix
I Atomic operations to global memory slow entire kernel

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 11 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

General Purpose GPU Computing

What can be accelerated by running it on a GPU?

" Uniform parallelism
I Image processing, fluid simulation, molecular dynamics,

. . .

? Non-uniform parallelism
I parsing

$ Sequential code

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 12 / 26

CUDA overview Earley parsing Gotchas Future work Runtime Organization Limitations

General Purpose GPU Computing

What can be accelerated by running it on a GPU?

" Uniform parallelism
I Image processing, fluid simulation, molecular dynamics,

. . .

? Non-uniform parallelism
I parsing

$ Sequential code

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 12 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number

RETCALL

CALL
RET

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 13 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Parallelizing Earley parsing

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 14 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Parallelizing Earley parsing

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 14 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Parallelizing Earley parsing

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 14 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Parallelizing Earley parsing

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 14 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Parallelizing Earley parsing

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 14 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Challenges parallelizing Earley parsing (1)

I Memory limitations:
I Each kernel has fixed storage for the computed items

and links
I Long input will exceed allocated storage
I Ambiguous input might exceed allocated storage
I . . . but we don’t know that before starting the kernel!

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 15 / 26

CUDA overview Earley parsing Gotchas Future work The algorithm Parallelizing the algorithm Challenges

Challenges parallelizing Earley parsing (2)

I Synchronization limitations:
I Each item entails an unknown number of further items
I This is non-regular parallelism
I . . . which breaks coalescing of memory accesses
I . . . which breaks warp parallelism
I Barriers aren’t flexible enough for this

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 16 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Problem: out of room!

I Computers have a finite amount of memory

I All algorithms have a “hot set” of actively-used
memory and a “cold set” of less-active but still
needed memory.

I Total needed memory may be greater than
available space

Solution: virtual memory and paging

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 17 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Solution: virtual memory

I Allocate space in many areas of memory
I Would like a default memory manager

I Might handle coalescing constraints automatically?

I Only manage paging manually when necessary

Limitations:

I Like garbage collection — usually useful, but
can be improved upon with expert knowledge

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 18 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Problem: where’s that pesky pointer?

I Device and host have separate physical memory
I Separate address spaces

I Device and host pointers both have type τ*
I C has only one address space

I Reading device pointers from host: segfault
Reading host pointers from device: kernel crash

I “Workaround”: name your variables carefully
and don’t get confused

Solution: need region analysis of pointers

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 19 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Problem: where’s that pesky pointer?

I Pointers to pointers are useful:
I Traversing a worklist with “start” and “end” pointers
I Implementing ragged-edge arrays

I Compiler currently chokes on these (?!)

I “Workaround”: use indices instead of pointers
and don’t get confused

Solution: need better pointer support and bounds
checking

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 20 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Solution: need compiler analyses

Limitations of above workarounds:

I Compiler doesn’t check for naming consistency

I Compiler doesn’t do bounds-checking of offsets

I Relies too much on convention and coding style

Pointer analyses are central to good compilers

I Ought to get this right!

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 21 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Problem: how do I debug this?

I Kernels run on the device

I printf runs on the host

I Device and host memory spaces are separate

I . . . so no debug printf!

I . . . and no breakpoints inside kernels!

Solution: use emulation mode

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 22 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Solution: emulation mode

I Recompile the code to use threads on host

I Can use printf and breakpoints

Limitations:

I Scheduling threads 6= true parallelism

I Host and device memory spaces are merged

I emulation mode semantics 6= device semantics

Need to get this right!

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 23 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Problem: can I reuse your kernel?

I Suppose someone has written a great library for
parallel-prefix computation

I (Someone has; it’s called CUDPP)

I Suppose you get to a point in your kernel where
you need a parallel-prefix computation

I CUDA kernels have no call stack

I “Workaround”: er, copy and paste? go back to
host?

Solution: nested kernels

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 24 / 26

CUDA overview Earley parsing Gotchas Future work Limited memory Pointer regions Debugging Code reuse

Solution: want nested kernels

I Would like to just call their kernel as appropriate

I No call stack means no launching kernels from
within a kernel

I Inlining means you can’t even call their
subroutines properly

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 25 / 26

CUDA overview Earley parsing Gotchas Future work

So what are we wishing for?

Tools!
I Region-based pointer analysis

I Nested kernels

I Better static analyses of resource usage

I Bounds checking on offsets

I Better “virtual memory” support

I Automatic handling of coalescing constraints

I More, different synchronization primitives

I An accurate emulator

I . . .

Benjamin Lerner (UW CSE, AT&T) Experiences with CUDA NJPLS 2008 26 / 26

	CUDA overview
	Runtime
	Organization
	Limitations

	Motivating example: Earley parsing
	The algorithm
	Parallelizing the algorithm
	Challenges for parallelization

	Common gotchas and workarounds
	Limited memory
	Pointer regions
	Debugging
	Code reuse

	Welcome Future Improvements

