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State of the art

I Intel CPU:
8 threads, $1500

I Graphics card:
15000 threads, $500

I Intuitive, affordable
parallelism: priceless
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Typical CUDA Program

Most programs are a mix:
I Sequential setup/result

processing

I Very parallel, uniform
work (kernels)

I Examples:
image rendering,
physics simulations,
large matrix operations

Goal: offload parallel work to
device

Host

Device

Host

Device

Host
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Runtime model

Each CUDA kernel specifies a
I grid

I of blocks

I of threads

Each kernel invocation specifies
the grid and block sizes

Host

Device

Block (0,0)

Block (0,1)

Block (1,0)

Block (1,1)

Block (2,0)

Block (2,1)

Grid 0

Host

Device

Block (0,0)

Block (0,1)

Block (0,2)

Block (1,0)

Block (1,1)

Block (1,2)

Grid 1

Host
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Memory organization

Five levels of memory available on device:
..
.

..
.

..
.

. . .
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Memory organization

Five levels of memory available on device:
..
.

..
.

..
.

thread-local registers

. . .

16KB shared

1GB global

64KB constant cache

512MB texture cache

Declared at kernel call,
unreachable from host

︸ ︷︷ ︸
Initialized, readable from host
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Parallel execution

I Blocks execute independently

I Threads grouped within blocks:
32 threads = 1 warp
16 threads = 1 half-warp

I SIMD-style parallelism per
half-warp, when possible:

I “Safe” memory accesses are
coalesced, execute in unison

I Memory conflicts, branched
control force serialization

Coalesced warp execution

half-warp 0 half-warp 1

Serialized warp execution
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Synchronization primitives

Between threads in a block:

I Barrier synchronizing all threads

I Atomic operations on shared memory

Between blocks in a kernel:

I Atomic operations on global data

Between kernels on the host:

I Barrier until kernel finishes

Note: no condition variables, semaphores, etc. as primitives
. . . encourages certain style of coding
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Memory Limitations

I All memory management is manual

I Choice of memory location is crucial
I 16KB? Really?

I Leads to manual “paging” schemes

I Manually contort code for coalesced memory
accesses

I Crucial to performance
I Confusing to get right
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Parallelism Limitations

I No nested parallelism: can’t launch a kernel
within a kernel

I useful for different granularities of parallelism
I . . . can sometimes manually fuse two or more kernels

I Synchronization primitives are difficult to use
I Thread barriers and conditional branches don’t mix
I Atomic operations to global memory slow entire kernel
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General Purpose GPU Computing

What can be accelerated by running it on a GPU?

" Uniform parallelism
I Image processing, fluid simulation, molecular dynamics,

. . .

? Non-uniform parallelism
I parsing

$ Sequential code
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Motivating example: Earley parsing

Input:

1 + 2 + 3

S + S

number
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Parallelizing Earley parsing
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Challenges parallelizing Earley parsing (1)

I Memory limitations:
I Each kernel has fixed storage for the computed items

and links
I Long input will exceed allocated storage
I Ambiguous input might exceed allocated storage
I . . . but we don’t know that before starting the kernel!
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Challenges parallelizing Earley parsing (2)

I Synchronization limitations:
I Each item entails an unknown number of further items
I This is non-regular parallelism
I . . . which breaks coalescing of memory accesses
I . . . which breaks warp parallelism
I Barriers aren’t flexible enough for this
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Problem: out of room!

I Computers have a finite amount of memory

I All algorithms have a “hot set” of actively-used
memory and a “cold set” of less-active but still
needed memory.

I Total needed memory may be greater than
available space

Solution: virtual memory and paging
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Solution: virtual memory

I Allocate space in many areas of memory
I Would like a default memory manager

I Might handle coalescing constraints automatically?

I Only manage paging manually when necessary

Limitations:

I Like garbage collection — usually useful, but
can be improved upon with expert knowledge
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Problem: where’s that pesky pointer?

I Device and host have separate physical memory
I Separate address spaces

I Device and host pointers both have type τ*
I C has only one address space

I Reading device pointers from host: segfault
Reading host pointers from device: kernel crash

I “Workaround”: name your variables carefully
and don’t get confused

Solution: need region analysis of pointers
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Problem: where’s that pesky pointer?

I Pointers to pointers are useful:
I Traversing a worklist with “start” and “end” pointers
I Implementing ragged-edge arrays

I Compiler currently chokes on these (?!)

I “Workaround”: use indices instead of pointers
and don’t get confused

Solution: need better pointer support and bounds
checking
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Solution: need compiler analyses

Limitations of above workarounds:

I Compiler doesn’t check for naming consistency

I Compiler doesn’t do bounds-checking of offsets

I Relies too much on convention and coding style

Pointer analyses are central to good compilers

I Ought to get this right!
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Problem: how do I debug this?

I Kernels run on the device

I printf runs on the host

I Device and host memory spaces are separate

I . . . so no debug printf!

I . . . and no breakpoints inside kernels!

Solution: use emulation mode
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Solution: emulation mode

I Recompile the code to use threads on host

I Can use printf and breakpoints

Limitations:

I Scheduling threads 6= true parallelism

I Host and device memory spaces are merged

I emulation mode semantics 6= device semantics

Need to get this right!
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Problem: can I reuse your kernel?

I Suppose someone has written a great library for
parallel-prefix computation

I (Someone has; it’s called CUDPP)

I Suppose you get to a point in your kernel where
you need a parallel-prefix computation

I CUDA kernels have no call stack

I “Workaround”: er, copy and paste? go back to
host?

Solution: nested kernels
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Solution: want nested kernels

I Would like to just call their kernel as appropriate

I No call stack means no launching kernels from
within a kernel

I Inlining means you can’t even call their
subroutines properly
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So what are we wishing for?

Tools!
I Region-based pointer analysis

I Nested kernels

I Better static analyses of resource usage

I Bounds checking on offsets

I Better “virtual memory” support

I Automatic handling of coalescing constraints

I More, different synchronization primitives

I An accurate emulator

I . . .
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