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Gap between hardware and system

Production Store: Ceph (Reef release) RGW

- 10 node, 60 NVMe drive with 3X replication

- 4KB: 312K IOPS for GET, 178K IOPS for PUT
- 312K/60*3 = 15.6K IOPS for GET
- 178K/60*3 = 8.9K IOPS for PUT

Hardware devices: Enterprise SSD: Samsung PM983

- Random Read (4KB): 540k IOPS
- Random Write (4KB): 50k IOPS


https://ceph.io/en/news/blog/2023/reef-freeze-rgw-performance/
https://download.semiconductor.samsung.com/resources/data-sheet/Product_Brief_Samsung_PM983_NF1_NVMe_SSD_1806.pdf

Consistency models (in dist. storage)

- Eventual consistency Weak
- Read-after-write consistency

- AWS S3: 2020 - now
- Linearizability

N4 Strong

Explanation of The S3 Consistency Model



https://alex-ber.medium.com/explanation-of-the-s3-consistency-model-82720b581b2e

Research question

- Can we build a fast, efficient and strongly-consistent

object store?
- To answer that, we present ZStore, which achieves three goals

- Machine learning and LLM
- NO! We don’t need ML or LLM



Key technology: Zoned NameSpace SSD

ZNS SSD follows
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Key operation in ZNS: Zone Append

- Zone Append
- Instead of specifying LBA write to, only specifying the zone starting LBA
- Append data to a zone with implicit write pointer
- Device/driver returns LBA where data was written in zone
- lIssues with Zone append:
- Reordering of sequence of writes, etc
- Consistency challenge
- Linearizability guarantee:
- RDMA to push information about ongoing writes without waiting for response



ject Store architecture
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ZStore write path (simplified)
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ZStore write path (cont’'d)
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ZStore write path (cont’'d)
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ZStore write path (cont’'d)
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S3 Bench evaluation
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- Single gateway
- Three targets
- 4KB object
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Wrk evaluation
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Takeaway

- ZStore is a new object store built on ZNS SSDs
- ZStore is efficient:
- k-way replication: k NVMe writes

- Read: 1 NVMe read of object data and metadata

- Close the gap between
- hardware performance and
- the performance of consistent storage service
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