ZStore: A Fast, Strongly-consistent
Object Store with ZNS SSDs

Shuwen Sun, Isaac Khor, Ji-yong Shin, Peter Desnoyers




Gap between hardware and system

Production Store: Ceph (Reef release) RGW

- 10 node, 60 NVMe drive with 3X replication

- 4KB: 312K IOPS for GET, 178K IOPS for PUT
- 312K/60*3 = 15.6K IOPS for GET
- 178K/60*3 = 8.9K IOPS for PUT

Hardware devices: Enterprise SSD: Samsung PM983

- Random Read (4KB): 540k IOPS
- Random Write (4KB): 50k IOPS


https://ceph.io/en/news/blog/2023/reef-freeze-rgw-performance/
https://download.semiconductor.samsung.com/resources/data-sheet/Product_Brief_Samsung_PM983_NF1_NVMe_SSD_1806.pdf

Consistency models (in dist. storage)

- Eventual consistency Weak
- Read-after-write consistency

- AWS S3: 2020 - now
- Linearizability

N4 Strong

Explanation of The S3 Consistency Model



https://alex-ber.medium.com/explanation-of-the-s3-consistency-model-82720b581b2e

Research question

- Can we build a fast, efficient and strongly-consistent

object store?
- To answer that, we present ZStore, which achieves three goals

- Machine learning and LLM
- NO! We don’t need ML or LLM



Key technology: Zoned NameSpace SSD

ZNS SSD follows

Application 1  Application 2 Application 3 Application 1  Application 2 Application 3
| | | l | | a Zoned Storage
Flash Flash - Translation layer
EEEEEEEEEEEEEEE Ej‘> o] oo i o implemented in
EEEEEEEEEEEEEEn .DDDDDuDDDDDFDDDDD' host
EEEEEEEEEEEEEEn DEIDEIE]GDDDDFDDDDD'
O00000000000000O -DDDDDGDDDD"DDDDD'
O0000000000000.0 uElElElElDuDDDEID"DDDDD'
000000000000000 000000000000000!
Regular SSD: Device controls data ZNS SSD: Applications control data

placement placementin zones



Key operation in ZNS: Zone Append

- Zone Append
- Instead of specifying LBA write to, only specifying the zone starting LBA
- Append data to a zone with implicit write pointer
- Device/driver returns LBA where data was written in zone
- lIssues with Zone append:
- Reordering of sequence of writes, etc
- Consistency challenge
- Linearizability guarantee:
- RDMA to push information about ongoing writes without waiting for response



ject Store architecture

ZNS Obj

{1 n = (T

P WP

Wﬁ- .ﬁ- .ﬁu- i

_
.....

ok ﬁ ik

Circular
buffer
@\::'—'—:::/
Load
balancer

N Gateways

Client

M Targets



ZStore write path (simplified)

4 \

. . -
T N
. @ key1->target1, lba1 | Map

‘ Data
\k y
Gateway \

\ ZNS SSD /

Storage node




ZStore write path (cont’'d)

4 pu \\ - Log | Data
key1->target1, Iba1l | Map /
key2->target2, — . @
\k / Log | Data
Gateway \

Storage node



ZStore write path (cont’'d)

B
: . a

pen N Log | Data
"1
key1->target1, Iba1
key2->target2, Iba2

N J B
Gateway \

Storage node



ZStore write path (cont’'d)

. (r

e N Log | Data
L~
key1->target1, Iba1 | Map /
key2->target2, Iba2 \ -

\ / ~
Gateway \

Storage node



S3 Bench evaluation

Throughput [req/s]
:

%

)
L

Zstore

Bl Recad

Ceph

B Write

Minio

- Single gateway
- Three targets
- 4KB object

12



Wrk evaluation

6. —e— /store Gets == Minio Gets
— —t—: Ceph Gets: —  weaae Network (40Gbps)
e
O,
+ 4 g
o]
=y
=
eh
o]
o)
= 2
=~
0

4KB

" 128KB

Object size

4MB

Zstore achieves
400k RPS at 4K
Saturates
network at 8KB

13



Takeaway

- ZStore is a new object store built on ZNS SSDs
- ZStore is efficient:
- k-way replication: k NVMe writes

- Read: 1 NVMe read of object data and metadata

- Close the gap between
- hardware performance and
- the performance of consistent storage service

14



