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Abstract
A new approach to tracking weakly modeled objects

in a semantically rich domain is presented. We define a
closed-world as a space-time region of an image sequence
in which the complete taxonomy of objects is known, and
in which each pixel should be explained as belonging to
one of those objects. Given contextual object information,
context-specific features can be dynamically selected as the
basis for tracking. A context-specific feature is one that has
been chosen based upon the context to maximize the chance
of successful tracking between frames.

Our work is motivated by the goal of video annotation –
the semi-automatic generation of symbolic descriptions of
action taking place in a contextually-rich dynamic scene.
We describe how contextual knowledge in the “football
domain” can be applied to closed-world football player
tracking and present the details of our implementation.
We include tracking results based on hundreds of images
that demonstrate the wide range of tracking situations the
algorithm will successfully handle as well as a few examples
of where the algorithm fails.

1 The problem
Video annotation is the task of generating descriptions

of video sequences that can be used for indexing, retrieval,
and summarization. It is different than conventional image
understanding in that one is primarily interested in what is
happening in a scene, as opposed to what is in the scene.

Many video annotation domains require documenting
the interactions between people and other non-rigid ob-
jects against non-static backgrounds and in unconstrained
motion. In this paper we describe a technique that incor-
porates contextual information into low-level tracking to
successfully recover the trajectories of such objects.

The method can be used to track objects found in annota-
tion tasks such as describing city street intersections, sport-
ing events, air traffic, pedestrian mall traffic, cell move-
ments from quantitative fluorescence microscopy, groups
of animals and meteorological objects. One real-world
annotation task which is currently performed manually by

professional sporting teams is play labeling. With an eye on
this problem, therefore, our test domain is football player
tracking.

Figure 1 illustrates the large amount of pan and zoom
present in a typical game film of a football play, where the
cameraman must keep as many players as possible in the
field of view.1 The pan rate is such that it is not uncommon
for the image to shift about five pixels between two frames
sampled at thirty frames per second, and the wide-angle
focal length induces a fairly substantial barrel distortion
when the camera is zoomed out.

A brief analysis of the domain and the imagery reveal
why this is such a challenging problem. A typical play
lasts about ten seconds yielding 300 frames of deinter-
laced, 700x240 video. Once the play has been digitized
and deinterlaced, players range in size from about 20 by
20 pixels to about 10 by 10 pixels, depending upon the
setting of the camera. A sampling of various players at
different times during a play is shown in Figure 2. The
players move rapidly and change direction unpredictably,
violating the smooth motion assumption of many tracking
algorithms. Additionally, accurate motion estimates are
difficult to obtain because they are compounded with cam-
era motion and it is hard to define a reference point on a
non-rigid, blob-like object from which to compute velocity.
Finally, football players frequently collide. Color data, dis-
cussed in [7] provides more information that can be used for
tracking, but it does not fundamentally solve the tracking
problem.

In this paper, we begin by presenting some previous ap-
proaches to tracking and we argue that they are severely
inadequate for the low-resolution, amorphous, multiple-
object tracking required. We next define a “closed-world”
as a region of space and time in which all the objects present
in that region are known; what is unknown and needs to be
estimated is the state and position of each of the objects.
The advantage of a closed-world is that knowledge of which

1The entire sequence, results described in this paper, reference [7], and
more current work can be viewed at:
http://www-white.media.mit.edu/vismod/demos/football/football.html.



Figure 1: Two 700x240 deinterlaced frames of a typical pass play
from pan/zoom video of a college football game.

objects are present can be used to select what information
is most powerful for tracking each of the objects of interest.
We describe how a closed-world interpretation can be used
for tracking in dynamic scenes and the components of the
theory are presented using examples drawn from the foot-
ball domain. Finally we present results of tracking football
players that demonstrate the application of the technique
on examples consisting of hundreds of frames.

2 Previous approaches for tracking
Visual tracking usually employs one or some com-

bination of the following methods: (1) correlation or
adaptive template correlation[19] that can create “drift-
ing templates,” (2) energy-based deformable models[2, 21]
that require good support from data and slowly chang-
ing objects (3) differential motion estimators[15, 6, 3]
that use smooth or planar motion models, (4) feature-
based edge or blob trackers[5, 14, 8] that require mean-
ingful boundary extraction, and (5) model-based tracking
techniques[10, 8, 20, 9, 17] that use 2d and 3d geometrical
models of rigid objects combined with recursive smooth-
motion estimators. The difficulties of applying these meth-
ods to the football tracking problem are discussed in more
detail in [7].

The use of high-level domain knowledge is not
widespread in the tracking literature. Toal’s work touches
on the idea that non-geometric information can be used to
improve vehicle tracking[18]. Vehicles are constrained in
different ways depending upon their environment, and Toal
has suggested that this information might be used in a video
understanding system. Allen’s bird counting system [1] il-
lustrates that recognizing the same type of object in two dif-
ferent contexts (grounded and flying birds) may require two

Figure 2: Offensive and defensive players and officials clipped
from the football imagery. The objects are difficult to model,
especially when colliding) due to the inherent complexity of the
object shapes and the poor spatial resolution.

entirely different vision methods. Fu’s shopper system[4]
and Prokopowicz’ active vision tracker[13] also select fea-
tures based upon the context in a dynamic situation. Finally,
Rosin’s outdoor security system is unusual because he has
specifically invoked non-geometric contextually-dependent
informationabout an outdoor scene to improve the system’s
tracking and recognition capabilities[14].

3 Closed-worlds
This section defines “closed-worlds” and describes how

they can be used to select and limit the contextual knowl-
edge appropriate for a given tracking situation.

3.1 Context and closed-worlds
The task of tracking objects in a complicated domain

such as football requires using some type of knowledge
about the world. Limiting the tracking system to a partic-
ular domain establishes which body of knowledge is rele-
vant; for tracking football players all knowledge about the
field, the rules, the strategy, and the tendencies may reduce
the uncertainty inherent in the tracking problem. However,
that raises the problem of deciding which information is
important at each time instant.

Context is one way of addressing the knowledge-
selection problem. For the work we present here we con-
sider the context of a tracking problem to be a boundary
in the space of knowledge — a boundary outside of which
knowledge is not helpful in solving the tracking problem.
Continuing the football example, a context would be some-
thing like “a region of the field near the upper hashmark
on the 50 yard line that contains two players, one offensive
and one defensive.” This context is quite specific and is
likely to determine the way that vision processing tools are
selected and the scene is analyzed.

To use context effectively, we propose using a closed-
world assumption. A closed-world is a region of space and
time in which the specific context is adequate to determine
all possible objects present in that region. For the above
example, the closed-world contains the two players, the po-
sitioned hash-marks and yard-line, and grass. The internal
state of the closed-world — e.g. the positions of the play-
ers — however is unknown and must be computed from the
incoming visual data. Visual routines for computing the
internal state can be selected using the context-restricted



domain knowledge and any information that has already
been learned about the state within the world from previous
processing. Closed-worlds circumscribe the knowledge
relevant to tracking and therefore reduce the complexity of
the tracking problem.

We note that a few other authors developed systems that
use contextual information and approaches similar to our
closed-worlds. Nagel[12] has hinted at using a closed-
world assumption when building systems that extract con-
ceptual descriptions from image sequences. He speculates
that one way to improve motion recovery is to exhaustively
model all types of motion expected within the given do-
main. Further, he suggests that a description of a scene will
require describing the intentions of the objects in the world.

The Condor system designed by Strat[16] uses the output
of many simple vision processes and local context in the
scene for recognition of outdoor imagery. The Condor
system “treats objects as component parts of larger contexts
from which they cannot be separated;” objects have “no
independent existence.” Strat notes that it is easier to design
visual routines that work within some specified context than
to construct general purpose algorithms.

Finally, Mundy’s MORSE system[11] will operate using
a closed-world assumption that all data in a modelboard
scene should be consistent with all the rules and objects
known to exist in the domain. MORSE assumes a simple
explanation for the closed space and then gradually works
up to the most complicated examples. Mundy suggests
that strong evidence of occlusion cannot be found in an
open-world.

3.2 Entities in a closed-world
Two types of entities exist in a closed-world, objects

and image regions. Objects are the physical things in the
real world scene that the system must monitor in order
to develop a useful interpretation. The knowledge of the
domain dictates how objects can interact and is independent
of how the scene is captured for vision analysis. Image
regions are the image data, or the objects projected onto the
image plane.

3.2.1 Objects

From a computer vision standpoint, not all objects are cre-
ated equal. Some objects, typically man-made structures,
are well-defined by geometrical measurements. Others,
like most biological matter, are blob-like and more diffi-
cult to describe precisely. The degree to which an object
can be precisely specified helps determine the type of vi-
sual processing appropriate for that object. In the football
domain, we group the objects found in closed-words into
three categories: precise, approximate, and amorphous.

Precise models can be modeled analytically and are
common in the computer vision literature. Examples from
the football domain are geometric field objects like lines and
hashmarks. Approximate models are those whose specifi-
cations are not geometrically precise; such models are far
more common in many applications. While the position
and size of the lines and numbers on a football field are
exactly specified, the actual font for the numbers is not
fixed. Other field markings (such as the mid-field decal)
are completely arbitrary. While there may be no simple
way to obtain an exact geometrical specification of these

Figure 3: Five different closed-world regions. The rightmost
closed-world contains two players and line and hashmark objects.

objects, it is possible from the football video to reconstruct
approximate pixel-based models for the given field (details
available in [7]). Finally, amorphous objects are those that
cannot be well-defined visually. In the football domain,
the players are the amorphous objects since they change
rapidly over time in complex ways that are hard to model,
especially given the low-resolution, discretized data. What
can be known about these objects is not their visual geomet-
ric structure but their characteristics, such as light-colored
jerseys. This type of knowledge can be incorporated into
tracking algorithms if the algorithms know which informa-
tion to consider when deciding how to track an object. The
closed-worlds define which knowledge is relevant.

3.2.2 Image regions

Objects in a closed-world are projected onto the image
plane into a closed-world image region. Because image
projection preserves object identity, the objects present in
the closed-world region are known. However, their distri-
bution among the pixels of the image region is unknown
and needs to be computed if the objects are to be tracked to
the next frame of an image sequence.

Several closed-world image regions are shown in Fig-
ure 3. The regions contain turf, a line, hashmarks, one
or two players, and/or part of a logo object. Ideally, ev-
ery pixel in the image region should be explained by some
closed-world object, and thus used to track the object to the
next frame. Computing this explanation requires the use of
visual processing, and the selection of processing routines
should be based upon the context of the closed-world.
3.3 Isolating closed-worlds in a dynamic scene

If a player is running down the field, isolated from any
other players, then the only knowledge a tracking system
would need to know is related to the player himself and any
nearby “field objects.” Together they form an appropriate
closed-world. However, when that player moves close to
another player, the closed-worlds of each player must be
merged into one closed-world; the action of one player may
affect the other or the spatial distance between the players
may be too close for vision algorithms to interpret without
additional domain knowledge.

The above example is designed to motivate the use
of independence in determining the boundaries of closed-
worlds. When local movements and visual interpretations
of an object are independent of all other objects, that first



object can be analyzed within its own closed-world. When
two objects are interacting, however, a single closed-world
must contain them both. Without considering all interact-
ing objects simultaneously, the vision system cannot prop-
erly determine which types of processes are best suited for
analyzing the closed-world events.

For the local tracking analysis in the football domain,ob-
ject proximity can be used to identify independent closed-
world boundaries. We can assume that if two objects are
not physically near each other they will not influence each
other in any way that a tracker must consider when only
tracking an object from one image sequence frame to the
next. In section 4.3 we describe one of two mechanisms
we have implemented for finding closed-worlds in the foot-
ball domain. Both are based upon defining image regions
known to contain as few objects as possible while ensur-
ing that each tracked object is wholly contained by some
closed-world.
3.4 Selecting context-specific features

For robust tracking in a complex scene, a tracker should
understand the context of the current situationat a particular
time well enough to know which features of an object can
be tracked from frame to frame and which features cannot.
By feature we mean some image-based descriptor that can
be localized in a given image. One example is a template
containing all of an object’s pixels; another is a motion
vector template for part of the object. In a dynamic scene,
the features of an object that can be reliably tracked are
likely to change as the object’s interactions change. Fea-
ture trackers, therefore, should be selected according to the
context in force during the time they are being used.

Closed-world analysis provides a complete description
of closed-world image regions. By knowing which objects
are present in a closed-world, a tracking system can select
features which are most likely to be reliable in separately
tracking each of them. Knowledge of the player types (e.g.
one is offensive, one is an official) and object types (num-
bers, grass) can be used to select maximally discriminating
pixels. Examples of such context-specific assignment will
be given in the next two sections.

4 Tracking football players
In this section we describe the application of the closed-

world analysis to the problem of tracking football players.
The basic algorithm is:

1. The positions of the players and of the field objects
are initialized.

2. Closed-world image regions around the players are
computed for the current frame.

3. Each pixel within each closed-world image region is
assigned to one of the objects within its closed-world.

4. Context-specific features are used to construct tem-
plates for tracking each player in the closed-world.

5. Players are tracked to the next frame using the tem-
plates. Go to 2.

In this section we present the details of each of the above
steps when tracking single players. In Section 5 we extend
the method to multi-player tracking where steps 3 and 4 are

more complicated and context-specific feature selection is
more important.

4.1 Non-player objects
All non-player objects in the football domain are “field

objects.” We have modeled these objects using bitmaps and
intensity histograms. Each type of object is represented
slightly differently, depending upon how well the object’s
bitmap and histogram could be estimated or recovered. The
helmet logo, for example, is modeled with a rough intensity
bitmap and an allowable intensity variation range but the
turf is modeled only with an intensity histogram.

In order to know the spatial relationship between these
field objects and the players as the players move about
the field, we converted the original image sequence into
a rectified one in which the square grid lines of the field
appear as squares in the image, as shown in Figure 4-
a. This is simple to do using a homographic transform
(perspective four-point transform). This rectification was
achieved automatically by tracking many line intersections
and computing a least squares solution. Details can be
found in [7]. Once this is accomplished, at any player
position we know which field objects are nearby.

4.2 Initialization
Before tracking can begin, the position of each player

in the original imagery must be identified so that closed-
worlds can be localized and so that features can be chosen
for tracking. For the results shown here, the closed-world
initialization (first frame only) is performed manually by
marking one point on the center of each player’s torso and
identifying the type of player. That point is used as the
initial position of the template.

4.3 Isolating closed-worlds
Closed-world boundaries for tracking can be defined us-

ing independence. For football, local independence can be
identified using spatial proximity and isolation; objects that
are near one another should be considered simultaneously
when tracking. We have implemented two techniques for
determining such regions, both of which have been used
for closed-world tracking. The first, not presented, is based
upon variance in image intensities and exploits the unifor-
mity of intensity is most regions of the field. The second,
described here, uses motion differencing on the rectified
imagery.

Significant lens distortion and error in camera-motion
removal prevents simple background subtraction. Instead,
spatio-temporal operators are used to compute a smoothed
temporal derivative over the image sequence. Morpho-
logical erosion and dilation operations are then used on
each frame, producing contiguous blobs. Unfortunately,
the morphological operations also magnify errors resulting
from rectification jitter, as shown in Figure 4-b.

To ensure that motion blobs completely contain player
objects, all blobs that are identified as containing players
are simultaneously “grown” outward from the edge of the
motion blob contour. The expanded regions can touch but
not overlap, as shown by the regions around the center
players in Figure 4-c.

When players are locally spatially independent, their
motion difference blobs will not merge and can be be used
to define the closed-world region around a player. If no
motion blob exists in the region around player, the player
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Figure 4: (a) A rectified image frame. (b) Initial object position and closed-world boundaries. (c) Stabilizing the imagery is difficult due
to lens-distortion and line-finding errors, as is highlighted by motion blob detection using the rectified imagery.

is assumed to be static and the player’s previous closed-
world is used at the current frame. For the details of the
motion-based closed-world region finding algorithm, see
[7].
4.4 Pixel assignment and template formation for

isolated players
The goal is to construct a template of the player using

information about other objects in the closed-world. We
do so by assigning pixels to either field objects or to the
player where the method by which we identifyplayer pixels
changes based upon what other objects are nearby. The
pixels identified as player pixels are used in a template that
is matched to the next frame.

We construct the player templates as follows: Each non-
player object known to be in the closed-world from the
global rectification process is projected onto the closed-
world image region. At each pixel in the closed-world
image region, the algorithm checks if there is any type of
field object within a small spatial region. If so, the pixel
intensity is checked to see if it falls within an allowable
range for each of the candidate field objects. If it does, then
the pixel in the closed-world is marked as “don’t care.”
This processing is used for all field objects – turf, lines,
hashmarks, numbers, arrows, and logos.

A closed-world is shown in Figure 5-a, and bitmap rep-
resentations of the objects in that closed-world are shown in
Figure 5-b. The actual models used for all these objects are
slightly different (i.e. the histogram ranges and variances
are all different). The objects are used to mark “don’t care”
pixels. The final “player pixel” template is shown in Fig-
ure 5-c. This template is the context-specific feature used
to track the player.

We note that each pixel removal decision is made inde-
pendently. There is no restriction stipulating that a given
field object can only cause a certain number of pixels to
be removed. Any pixel that could reasonably be part of
a field object based on its spatial location and the model
of the field object is removed and not used for tracking.
This algorithm is simple but powerful, since it does not
require that our models of objects like numbers and logos
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Figure 5: (a) Closed-world image region. (b) Objects in
closed-world. (c) Remaining template after pixels are removed
by being “possibly-explained” by the objects. (d) A typical cor-
relation match score for the next frame.

be exact, and objects in the closed-world can all be repre-
sented differently. Further, it allows for some error in the
rectification process. As long as the positions of the ob-
jects in the closed-world are approximately known (either
from previous tracking or from some global information
like the field model), the majority of pixels that remain af-
ter the non-player object removal will belong to the tracked
player.
4.5 Template tracking

Once a template has been constructed using the closed-
world, it is matched to the next frame using correlation.
Matching occurs over a small region in the next frame
centered around the old player position. The rectified im-
agery is used for matching since camera motion has been



removed. Figure 5-d shows a typical matching score for
a template in the next frame. There is a clear correlation
peak, despite the small number of pixels in the template.
Since features that might be incorrectly matched due to non-
player objects have been removed, the template is matching
only “player features” and a few erroneous pixels. As long
as the majority of the pixels in the template are truly player
pixels, the template will not drift off the player and onto
field objects.
4.6 Single-player results

The algorithm described has been tested on one nine
second football play which consists of 270 frames; for
this section we use subsequences that have isolated play-
ers running over field objects. There are fourteen such
test sequences with an average length of 113 frames and a
maximum length of 240 frames. The test sequence, some
frames of which are shown in Figure 1, has significant
camera motion and zoom.

A simple adaptive template tracker, described in [7], will
tend to drift from the player as the player moves over field
objects, as shown in Figure 6-a. In comparison, Figure 6-b
and Figure 6-c illustrate 200 frames of successful tracking
of the same player using the closed-world technique. Be-
cause the template does not contain many contaminating
pixels from the background objects, the field markings do
not come to control the behavior of the template. Finally,
in Figure 6-d the tracker is quickly pulled off the offensive
player around frame 215 because of interference by the de-
fensive player in the closed-world. In section 5 we will
address this type of interaction.

The method also performs well on more complicated ex-
amples where players change direction quickly and run over
field numbers. Erratically-moving objects are problematic
for Kalman filter based trackers that estimate velocity. Fig-
ure 6-e and Figure 6-f show the result of tracking the player
for 230 frames, where the player stops and changes di-
rection and runs over field objects. The context-specific
template succeeds by only tracking the parts of the player
that are distinguishable from the objects he occludes. Fur-
ther, since no assumptions have been made about smooth
velocity, the template can capture the player’s sharp change
in movement.

A difficult field object for the tracker is the helmet field
logo. However, the algorithm can successfully track players
running over the helmet despite the similarity between the
helmet intensities and the player. See [7] for this example
and more results.

The closed-world tracking, as described in this paper,
will fail when (simultaneously) models are imprecise, spa-
tial resolution is low, and the player being tracked is un-
usually close in appearance to some nearby object. One
example is shown in Figure 6-g. Here the player briefly
turns in such way so that he is almost entirely “white” as
he crosses a “white” number on the far side of the field.
The tracker mislabels too many of the closed-world region
points as belonging to the “zero” object, and the template
loses the player. In the example play, two isolated-player
paths failed to be tracked successfully.

5 Multi-player closed-worlds
The failure of the single player tracker in Figure 6-d

occurred when a second player encroached in the closed-
world of the first, violating the single player closed-world

assumption. When two players are in a single closed-world,
therefore, the algorithm should use information about both
players to select and track the features that maximally dis-
tinguish the two players from each other and from all other
objects.

To be complete, every object type in a closed-world
should have a function that defines which features distin-
guish that entity from every other possible closed-world
entity. When the two entities are in the same closed world,
the features that are most likely to distinguish the two ob-
jects are extracted from the closed-world image region and
then used for tracking to the next frame.

For two player closed-world tracking, we use pixel in-
tensities as our discriminating features where we weight
pixels based upon the most distinctive intensity ranges of
offensive and defensive players and the officials. For de-
tails, see [7]. In short, the algorithm works as follows.
When players are in separate closed-worlds and closed-
world image region partitioning is good, all “player pixels”
are used for tracking as described in section 4. When two
player closed-worlds merge into one larger closed-world,
small but distinctive intensity features are selected based
upon the type (offensive, defensive, official) of the player
objects in the closed world. Those regions are tracked until
the closed-world splits into two, when the tracker reverts
back to the more robust single-player tracking method. The
two player tracking does not handle full occlusion.

The error of Figure 6-d is avoided when the multi-player
technique is employed. Both players are tracked simultane-
ously and when their closed-worlds merge context-sensitive
features are selected and tracked correctly. Figure 7 shows
a two-player tracking example where a bounding box has
been drawn around the active pixels. In Figures 7-a and 7-e
the players are being tracked using the single-player tracker.
However, in the intermediate frames only highly distin-
guishing pixels are automatically selected to be tracked –
the light back of the offensive player and the dark hat of the
official.

6 Summary
In this work we have defined context as a boundary in

the space of knowledge, and we have used the notion of a
closed-world to contextually restrict the type of knowledge
relevant for locally tracking an object. Our closed-world
tracking algorithm performs well tracking complex objects,
even when object motions are not smooth, small, or rigid
and when multiple objects of different types are interacting.
The algorithm was tested with real video taken from a
panning and zooming camera. Extensions to this work
will include more quantitative testing of the algorithm’s
performance and improvement of the multi-player tracking.
In addition, we plan to apply the technique to other domains
like hand and body tracking.

In Figure 8 we have overlayed some of the recovered
player paths on a background image of the field obtained us-
ing median filtering over the entire image sequence. These
paths are the type of input that will be used by a play un-
derstanding video annotation system we are developing.
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