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Abstract. In this work, a system for recognizing activities in the home
setting using a set of small and simple state-change sensors is introduced.
The sensors are designed to be “tape on and forget” devices that can be
quickly and ubiquitously installed in home environments. The proposed
sensing system presents an alternative to sensors that are sometimes per-
ceived as invasive, such as cameras and microphones. Unlike prior work,
the system has been deployed in multiple residential environments with
non-researcher occupants. Preliminary results on a small dataset show
that it is possible to recognize activities of interest to medical profession-
als such as toileting, bathing, and grooming with detection accuracies
ranging from 25% to 89% depending on the evaluation criteria used 1.

1 Introduction

In this paper, a system for recognizing activities in the home setting using a set of
small, easy-to-install, and low-cost state-change sensors is introduced. We show
early results that suggest that our sensing technology, which users may perceive
as less invasive than cameras and microphones, can be used to detect activities
in real homes. The results we present are preliminary but show promise. They
are unusual because the ubiquitous computing system and results we describe
have been tested in multiple real homes with subjects who are not affiliated with
the investigators’ research group or university.

Our vision is one where a large number of simple, low-cost “tape on and
forget” sensors are easily taped on objects throughout an environment and used
by a computing system to detect specific activities of the occupant. Computers
that can automatically detect the user’s behavior could provide new context-
aware services in the home. One such service that has motivated this work is
proactive care for the aging. Medical professionals believe that one of the best
ways to detect emerging medical conditions before they become critical is to look
for changes in the activities of daily living (ADLs), instrumental ADLs (IADLs)
[17], and enhanced ADLs (EADLs) [24]. These activities include eating, getting

1 This work was supported, in part, by National Science Foundation ITR grant
#0112900 and the Changing Places/House n Consortium.



in and out of bed, using the toilet, bathing or showering, dressing, using the tele-
phone, shopping, preparing meals, housekeeping, doing laundry, and managing
medications. If it is possible to develop computational systems that recognize
such activities, researchers may be able to automatically detect changes in pat-
terns of behavior of people at home that indicate declines in health. The system
described in this work could potentially be retrofit into existing homes to detect
and monitor ADLs.

2 Background

Everyday activities in the home roughly break down into two categories. Some
activities require repetitive motion of the human body and are constrained, to
a large extent, by the structure of the body. Examples are walking, running,
scrubbing, and exercising. These activities may be most easily recognized using
sensors that are placed on the body (e.g. [19, 11, 18]). A second class of activi-
ties, however, may be more easily recognized not by watching for patterns in how
people move but instead by watching for patterns in how people move things. For
instance, the objects that someone touches or manipulates when performing ac-
tivities such as grooming, cooking, and socializing may exhibit more consistency
than the way the person moves the limbs.

In this work we focus on the latter problem and ask the question, “can
activities be recognized in complex home settings using simple sensors that detect
changes in state of objects and devices?” Although progress is being made on
algorithms that monitor a scene and interpret the sensor signals from complex
sensors such as cameras or microphones, the recognition inference problem is
often seriously underconstrained. Computer vision sensing, for example, often
works in the laboratory but fails in real home settings due to clutter, variable
lighting, and highly varied activities that take place in natural environments.
Little of the work with video and audio processing in the lab has been extensively
tested in the field. Perhaps just as importantly, however, because sensors such as
microphones and cameras are so general and most commonly used as recording
devices, they can be perceived as invasive and threatening by some people.

For these reasons, we are exploring the recognition potential of deploying
very large numbers of extremely simple sensors. Simple sensors can often pro-
vide powerful clues about activity. For instance, a switch sensor in the bed can
strongly suggest sleeping [1], and pressure mat sensors can be used for tracking
the movement and position of people [22, 2]. Although others have written on the
potential of sensor networks (e.g. [7, 13, 14]), we are unaware of work where large
numbers have been deployed in multiple, non-laboratory home environments and
used for ADL pattern recognition.

Previous work where sensors have been placed on objects in the environment
have typically been used in laboratories or homes of the researchers themselves
and their affiliates. Further, all of these systems have required careful (and usu-
ally painstaking) installation and maintenance by research staff and students
(e.g. [20, 1, 21]). With few exceptions (e.g. [20]) only a small portion of the homes



are sensor-enabled. Prior work, however, has shown the potential of multiple,
simple switches for activity detection. In the MARC home, simple sensors in
a kitchen (temperature on stove, mat sensors, and cabinet door sensors) have
been used to detect meal preparation activities [2]. In that work, mixture models
and hierarchical clustering were used to cluster the low-level sensor readings into
cooking events using temporal information [2]. However, choosing the number of
clusters to use and correlating the clusters of sensor readings to activities may
grow more difficult as larger numbers of sensors are added to environments to
recognize a more diverse set of activities. RFID tags placed at objects in the
environment and combined with unsupervised mining of activity models from
the web have also shown promise for activity recognition [23]. Although this ap-
proach does not need the subject to label his activities, it could prove difficult to
adapt to individual patterns of activities. In this work we explore a supervised
learning approach.

Hierarchical hidden semi-Markov models (HHSMMs), a type of dynamic be-
lief network (DBN), have been used to track the daily activities of residents in an
assisted living community [15]. The algorithm can distinguish different activities
such as “asleep” and “having meals” solely based on noisy information about the
location of the residents and when they move. Even though DBNs show some
promise, they may not scale to environments that contain hundreds of sensors,
particularly if real-time recognition of activity is a goal.

Sequence matching approaches have been applied to predict inhabitant’s ac-
tions. The SHIP algorithm matches the most recent sequence of events with
collected histories of actions to predict inhabitant future actions [4]. This ap-
proach, however, does not model ambiguous and noisy information from multiple
sensors.

3 Activity Detection Approach

The following design goals motivated the activity recognition algorithms devel-
oped in this work.

Supervised learning. Homes and their furnishings have highly variable lay-
outs, and individuals perform activities in many different ways. The same
activity (e.g. brushing teeth) may result in a significantly different sensor ac-
tivation profile based upon the habits, or routines of the home occupant and
the layout and organization of the particular home. One approach to han-
dling such variability is to use supervised learning with an explicit training
phase.

Probabilistic classification. Probabilistic reasoning offers a way to deal with
ambiguous and noisy information from multiple sensors.

Model-based vs instance-based learning. Model-based algorithms use the
training examples to construct a mathematical model of the target classi-
fication function, which avoids the need to save all examples as raw data.
This could help alleviate end-user privacy concerns.



Sensor location and type independent. Ideally, the system would operate
effectively even when the algorithm is never explicitely told the location (e.g.
kitchen) and type (e.g. drawer) of a particular sensor. This would dramati-
cally reduce installation time.

Real-time performance. A system that recognizes activities in the home set-
ting is most useful if it performs in real-time. Training or model construction
time is less of a concern.

Online learning. Ideally the system would be capable of adjusting the internal
model in real-time as new examples of activities become available. This will
allow the algorithm to adapt to changes in the user’s routines over time.

In this work, we chose naive Bayesian classifiers[16] to detect activities using
the tape-on sensor system . Naive Bayesian classifiers make strong (and often
clearly incorrect) assumptions that each class attribute is independent given the
class. They also assume that all attributes that influence a classification decision
are observable and represented. For these reasons, they are sometimes assumed to
perform poorly in real domains. On the contrary, however, experimental testing
has demonstrated that naive Bayes networks are surprisingly good classifiers on
some problem domains, despite their strict independence assumptions between
attributes and the class. In fact, simple naive networks have proven comparable
to much more complex algorithms, such as the C4 decision tree algorithm [16,
3, 12, 5]. They also meet the design goals listed above.

One theory on why naive Bayes classifiers work so well is that the low vari-
ance of the classifier can offset the effect of the high bias that results from the
strong independence assumptions [6]. Although in this preliminary work we are
limited to small datasets, over time a tape-on sensor system and the experi-
ence sampling data collection method described shortly could be used to collect
a large sample of activity from a user’s home to train a classification system.
Even in the results presented in this work, more data appear to lead to better
recognition results. To apply naive Bayes classifiers to the activity recognition
problem, however, temporal dependencies may need to be considered. Therefore,
one approach would be to encode large numbers of low-order temporal relation-
ships in the networks [8]. In this work, the naive Bayes classifier is extended to
incorporate temporal relationships among sensor firings and recognize activities
in the home setting. These classifiers are easy to train, fast, and seem to improve
in performance with larger training sets.

Two versions of the activity recognition classifier were implemented. The
first is a multi-class naive classifier in which the class node represents all the
activities to recognize and its child nodes consist of one of two types: exist and
before attributes. In this configuration, all the activities are considered to be
mutually-exclusive, which means that the probabilities for all activities sum up
to one at any given time. The second version of the activity recognition classifier
implemented is multiple binary naive Bayes classifiers, each of them represent-
ing an activity to recognize. The main advantage of this binary decomposition is
that the representation does not enforce mutual exclusivity. In this way, detec-
tion of listening to music does not preclude detection of preparing breakfast. In



(a) (b)

Fig. 1. (a) The state-change sensors that can be installed ubiquitously throughout
an environment. Each device consists of a data collection board (shown) and a small
sensor. (b) One screenshot from the ESM tool used in this work to collect training data
on activities in the home setting.

this work, the prior probabilities for all the activities are assumed to be equal.
Moreover, maximum likelihood was used to learn the parameters of the networks.

4 Activity recognition system architecture

The proposed system consists of three major components: (1) The environmental
state-change sensors used to collect information about use of objects in the
environment, (2) the context-aware experience sampling tool (ESM) used by the
end user to label his or her own activities, and (3) the pattern recognition and
classification algorithms for recognizing activities after constructing a model
based on a training set.

4.1 Environmental State-Change Sensors

Although other low-cost wireless sensing systems have been developed, notably
Berkeley Motes [7] and Smart-ITS [14], their power and cost points still pose a
challenge for researchers interested in distributing hundreds of units in a single
home to collect synchronized data for several weeks or longer. The cost of these
devices is relatively high because they are designed as multi-purpose sensors.
Therefore, we have designed a new set of tape-on sensors optimized to perform
a single task at low cost: measuring change in the state of an object in home [9].
To achieve well-synchronized measurements, the most precise real-time clock
hardware was used in each board. Further, the signals from each board were
linearly interpolated to match the reference clock better after the end of the
study. These highly-specialized boards are 3-5 times less expensive than Smart-
ITS and Motes, which dramatically increases the number that can be installed in
homes working within a tight research budget. The estimated battery life of the
data collection board is one year if the external sensor is activated an average of
10 times per day for 30 seconds.

Figure 1a shows a sensor device, which actually consists of the sensor itself
connected by a thin wire to a 27mm x 38mm x 12mm data collection board. The
board fits snugly in a small plastic case of dimensions 37mm x 44mm x 14mm.



Activity sensor
ID

day activation
time

deactivation
time

duration
(sec)

room (opt) object
type (opt)

Preparing
breakfast

PDA 12/1/02 08:23:01 10 min

23 12/1/02 08:23:03 08:23:07 4 kitchen drawer
18 12/1/02 08:23:09 08:23:17 8 kitchen cabinet
89 12/1/02 08:24:49 08:24:59 10 kitchen fridge

door

.

.

. (many read-
ings)

Table 1. An example of the type of data that was acquired by the state-change sen-
sors and ESM. The activity attributes are acquired using experience sampling during
a training period. The sensor activations are collected by the state-change sensors dis-
tributed all around the environment. In the table, opt stands for optional attribute.

The boards can use either reed switches, which are activated when brought into
contact with a small magnet, or piezoelectric switches, which detect movement
of a small plastic strip.

4.2 Context-Aware Experience Sampling

Supervised learning algorithms require training data. In the laboratory, obtain-
ing annotated data is a straightforward process. Researchers can directly ob-
serve and label activity in real-time, or later through observation of video se-
quences. In the home environment, however, direct observation is prohibitively
time-consuming and invasive.

One alternative is to use the Experience Sampling Method (ESM) [10, 9].
When using ESM, subjects carry a personal digital assistant (PDA) that is used
as timing device to trigger self-reported diary entries. The PDA samples (via a
beep) for information. Multiple choice questions can then be answered by the
user. Figure 1b shows a screen shot from the ESM tool used in this work. The
protocol used to collect subject self report labels of activity in this work using
ESM is described in section 5.2.

4.3 Activity Recognition Algorithms

The purpose of the state-change sensors and ESM was to provide the necessary
data to create machine learning algorithms that can identify routines in activities
from sensor activations alone. In order to accomplish this goal, new algorithms
that correlate the sensor firings and activity labels and predict activities from
new sensor firings are required. Table 1 shows an example of the type of data
acquired with the sensors and using the ESM tool.

5 Study and Data Collection

Two studies were run in two homes of people not affiliated with our research
group to collect data in order to develop and test the activity recognition al-



gorithms. Both subjects granted informed consent and were compensated with
$15.00 dollars per day of participation in the study. The first subject was a pro-
fessional 30-year-old woman who spent free time at home, and the second was
an 80-year-old woman who spent most of her time at home. Both subjects lived
alone in one-bedroom apartments. 77 state-change sensors were installed in the
first subject’s apartment and 84 in the second subject’s apartment. The sensors
were left unattended, collecting data for 14 days in each apartment. During the
study, the subjects used the context-aware ESM to create a detailed record of
their activities.

5.1 State-Change Sensors Installation

The state-changes sensors described in section 4.1 were installed on doors, win-
dows, cabinets, drawers, microwave ovens, refrigerators, stoves, sinks, toilets,
showers, light switches, lamps, some containers (e.g water, sugar, and cereal),
and electric/electronic appliances (e.g DVDs, stereos, washing machines, dish
washers, coffee machines) among other locations. The plastic cases of the data
collection boards were simply placed on surfaces or adhered to walls using non-
damaging adhesive selected according to the material of the application surface.
The sensor components (e.g. reed and magnet) and wire were then taped to
the surface so that contact was measured. Figure 2 shows how some of the 77
sensors were installed in the home of the first subject. The devices were quickly
installed by a small team of researchers: an average of about 3 hours is required
for the sensors installation in a small one-bedroom apartment of typical com-
plexity. When sensors were installed, each data collection board (which has a
unique ID) was marked on a plan-view of the environment so that when the
sensor data was collected, the location (e.g kitchen) and type (e.g cabinet) of
each sensor was known.

5.2 Labelling Subject’s Activities

Experience sampling. The subjects were given a PDA running the ESM
software at the start of the study. As the state-change sensors recorded data
about the movement of objects, the subjects used experience sampling to record
information about their activities. A high sampling rate was used, where the
subject was beeped once every 15 minutes for 14 days (study duration) while at
home. At the beep, the subject received the following series of questions. First
the user was asked “what are you doing at the beep (now)?”. The subject could
select the activity that best matched the one that he/she was doing at the time
of the beep from a menu showing up to 35 activities. Next, the following question
was “For how long have you been doing this activity?” The subject could select
from a list of four choices: less than 2 min., less than 5 min, less than 10 min., and
more than 10 min. Then, the user was asked, ”Were you doing another activity
before the beep?”. If the user responded positively, the user was presented with
a menu of 35 activities once again. For the studies, an adaptation of the activity
categories used by Szalai in the multi-national time-use study [25] were used.



Fig. 2. Examples of some of the 77 sensors that were installed in the home of the first
subject. The sensors and data collection boards were literally taped to objects and
surfaces for the duration of the data collection period.

Several problems were experienced with the ESM annotation method, some
of which were learned about via interviews with subjects. Errors were observed
where the user selected the wrong activity from the list by mistake. Short du-
ration activities such as toileting were difficult to capture. There were delays
between the sensor firings and the labels of the activities specified in the ESM.
Fewer labels were collected than anticipated because subjects sometimes did not
answer the ESM questions at the beep. Finally, sometimes subjects specified one
activity and carried out a different activity.

Indirect observation of sensors activations. Unfortunately, the number of
labels acquired using the ESM method was not sufficient for training the machine
learning algorithms. Therefore, we were forced to resort to indirect observation
by studying the sensor activations. In this method, the author, with the help of
each subject, used self-inference to label the sensor data by visualizing the sen-
sor activations clustered by location, time of activation, and type (description)
of each sensor. Photographs of the sensors were also used to help the subject
remember her activities during the sensor firings. A few decisions made during
the manual annoation step impact the results that follow. First, activities were
assumed to occur sequentially. The only activities allowed to occur in parallel
with other activities were Listening to Music and Watching TV. Only the pri-
mary activity was labeled if a person was multi-tasking. Finally, only activities
for which there exist sensor activations were labeled.

Figure 2 shows the number of labels generated by ESM and by indirect obser-
vation of sensor activations. For both subjects, the combined number of labeled
activities is far less than desirable for a supervised learning algorithm. In cur-
rent work, we are improving the subject self-annotation methodology to generate



Measure Subject 1 Subject 2

Average activities captured per day using ESM 9.5 13

Average activities per day generated by I.O 17.8 15.5

Different activities captured using ESM 22 24

Different activities generated by I.O 21 27

Average ESM Prompts answered to per day 18.7 20.1

Table 2. Average number of labels collected by the ESM and indirect Observation
(I.O) per day during the study.

better datasets. However, here we described our work with this admitedly small
but still useful pilot dataset.

6 Feature Extraction, Training and Prediction

We assumed that temporal information, in addition to which sensors fired, would
be necessary to achieve good recognition using the naive Bayesian network ap-
proach. Therefore, one idea we explored in this work was to encode large numbers
of low-order binary temporal relationships in the naive Bayesian network clas-
sifier. Two temporal features have been used. The first is whether activation
of a particular sensor exists during some time period. The second is whether
a particular sensor fires before another particular sensor. Table 3 shows the bi-
nary features calculated over the sensor data. These features output the evidence
entered into the nodes of the naive Bayesian network.

The last two features in the table incorporate high level contextual informa-
tion about the type of object in which the sensor was installed (e.g cabinet) and
location of the sensor (e.g bathroom). The number of exist features that will
become nodes in the naive Bayes networks is equal to the number of sensors
present in the system (77 and 84 for subject one and two respectively). The
number features that become nodes for the before sensorID, before type and be-
fore location features is equal to the number of all pairs of sensors, object types,
and locations existent in the home environment (77x77=5929, 27x27=729, and
6x6=36 for subject one respectively).

Incorporating activity duration. Different activities have different mean
lengths of time. Therefore, in order to incorporate the activity duration, one
feature window per activity to recognize was used, and the length of each window
corresponded to the activity duration as carried out by the subject. Thus, if M

is the number of activities to recognize, there were M different feature windows
with lengths Li · · ·Lm. The duration or length Li for each feature window was
the average duration for each activity calculated from all the activity labels
generated by ESM and indirect observation. For example, the feature window
for toileting for the first subject was estimated to be 7 min, 27 sec. Preparing
lunch was estimated to be 37 min, 54 sec.



Feature description Example

exist(sensorA, start, end) Sensor A fires within time interval
before(sensorA, sensorB, start, end) Sensor A fires before sensor B within time

interval
before(sensorTypeA, sensorTypeB, start, end) Sensor in a drawer fires before a sensor in

the fridge within time interval
before(sensorLocationA, sensorLocationB, start, end) Sensor in kitchen fires before sensor in

bathroom within time interval

Table 3. Features calculated and evaluated

Time

Sensors

Example for
WashingHands

Toileting

Grooming

Washing
hands

Example for
Toileting

Examplefor
groomingExample for

Unknown
Examplefor

Unknown

73 Bathroom
     Faucet

68 Bathroom
     Door

88 Bathroom
     Toilet Flush
58 Bathroom
     Light

87 Bathroom
     Medicine 

57 Bedroom
     Cabinet

130 Bedroom
       Cabinet

101 Hall
       Light

100 Foyer
       Door

Time

Sensors

73 Bathroom
     Faucet

68 Bathroom
     Door

88 Bathroom
     Toilet Flush
58 Bathroom
     Light

87 Bathroom
     Medicine 

57 Bedroom
     Cabinet

130 Bedroom
       Cabinet

101 Hall
       Light

100 Foyer
       Door

Toileting L1 T+ ∆TT

Feature windows

Grooming L2
Preparing Lunch L3

Toileting L1
Grooming L2

Preparing Lunch L3

(a) (b)

Fig. 3. (a) Example of how training examples are created for “washing hands”, “toi-
leting”, “grooming” and two “unknown” activities. (b) Example of how features are
extracted from sensor firings using different feature window lengths for each activity
for time t and the next time to analyze t+4t in the prediction step.

Generation of Training Examples. In the training stage, training examples
are generated by calculating the features from the start to the end time of
each activity label. Figure 3a shows an example of how training examples are
generated. Examples for washing hands, toileting, and grooming are generated
whenever a label for washing hands, toileting, and grooming is found in the
dataset respectively.

Originally, there was no unknown activity, but examples of this class were
created by generating an example of it whenever no activity labels for other
activities were found in the dataset. Figure 3a also shows an example of how two
examples for the unknown class were generated.

Predicting the activity labels. In the prediction step, each feature window
(of length Li) is positioned at the current time to analyze, t. The features are
then calculated from time t−Li to time t. Once the features are calculated, the
probability for the current activity is calculated using the naive Bayes classifier.



Figure 4 conceptually shows an example of how the probability for each
activity is generated in the prediction step by shifting the feature window for each
activity over the sensor activations. Note that the probability is maximum when
the feature window aligns with the duration of the activity represented by sensor
activations (activity label). This indicates that the classifier may (depending
upon noise) report the best match at the moment the activity is ending.

Figure 3b shows an example of how the feature windows for each activity are
positioned in the current time to analyze t and in the next time to analyze t+4t
over simulated sensor data. The 4t increment in time used in the experiments
was three minutes, which was half of the duration of the quickest activity. In a
real-time application, however, the 4t can be chosen to be as small as required,
for example 5 seconds. While predicting an activity label for new observed sensor
firings, the activity with the maximum likelihood at any given time is considered
to be the classification result.

7 Algorithm Recognition Performance

Once the ESM and indirect observation labels were available, they were used
to train and test the machine learning algorithms. All activities containing less
than six examples were eliminated before training.2

Unlike other machine learning and pattern recognition problems, there is
no “right” answer when recognizing activities. The boundaries when activities
begin and end are fuzzy since they can occur sequentially, in parallel, alternating,
and even overlapping. Finally, there is significant variation in the way observers
would label the same activities.

Three methods were used to evaluate and measure the accuracy of the ac-
tivity recognition algorithms. Which method is most informative depends upon
the type of application that would be using the activity recognition data. The
methods consider different features of the system that could be important for
different applications, for example: (1) is the activity detected at all? and (2) for
how long is the activity detected? Figure 5 shows examples of each of the three
evaluation measures.

Percentage of time that activity is detected. This measures the percent-
age of time that the activity is correctly detected for the duration of the
labelled activity.

Activity detected in best interval. This measures whether the activity was
detected “around” the end of the real activity or with some delay φ. As
discussed in section 6, the end of the activity is “the best detection interval”.
Thus, the right most edge of each activity (E) is analyzed within an interval
of ±φ. It is important to remember that a detection delay is introduced

2 The threshold of six was chosen arbitrarily. Given the complexity of the activities
and the large amount of variation possible due to day of the week, time, and other
factors, to expect an algorithm to learn patterns with less than six examples did not
seem reasonable.
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Fig. 4. Example of how the probability for the “toileting” activity is generated in the
prediction step by shifting the feature window for “toileting” over the sensor activations
with increments of 4t (3 minutes for this study). Note that the probability is maximum
when the feature window aligns with the duration of the activity represented by the
sensor activations.

by the use of the feature windows that capture features back in time in our
algorithm. In this work, the interval φ was chosen to be 7.5 minutes. Different
applications would require different detection delays, thus different values of
φ could be used.

Activity detected at least once. This measures if an activity was detected
at least once for the duration of the activity label (no delay allowed).

Leave-one-out cross-validation was used in each evaluation method in or-
der to calculate the confusion matrix and measure the classification accuracy.
Cross-validation permits some classification testing even on small datasets. The
activity with the maximum likelihood at a given time was used when determining
classification accuracy using each of the three evaluation metrics.

Experiments to determine the discrimination power of the attributes were
performed by running the multi-class and multiple binary naive Bayes classifiers
with some of the possible combinations of attributes shown in Table 3. Tables
4 and 5 show the accuracies per class for the combination of attributes that
performed the best for the multiclass naive Bayes classifier for subject one and
two respectively.

8 Discussion

Accuracies vs number of examples. As expected, the activities with higher
accuracies were generally those with more examples. For subject one, they
were “toileting”, “grooming”,“bathing”, and “doing laundry”. For subject
two, they were “preparing lunch”, “listening to music”, “toileting” and “prepar-
ing breakfast”.



Percentage of Time that Activity is Detected

EndStart EndStartEndStart
Detection

Percentage 0% 
Detection

Percentage 50%
Detection

Percentage 20%

Time

Activity Label

Predicted Label

50%

P

0% 20%30% 50%50%

E E+φE-φ E
E+φE-φ

Activity Detected in Best Interval

Activity Not
Detected

Activity
Detected

Activity Detected
with Delay

TimeE E+φE-φ

Activity Label

Predicted Label

Activity Not
Detected

E E+φE-φE
E+φE-φ

Activity Not
Detected

End EndStart EndStart

Activity Detected at Least Once

ActivityNot
Detected

Activity
Detected

Activity
Detected

Time

ActivityL abel

PredictedL abel

A)

B)

C)

Fig. 5. Example cases of the (a) “percentage of time that activity is detected”, (b)
“activity detected in best interval” and (c) “activity detected at least once” evaluation
methods.

Discriminant attributes. Overall, the exist attribute showed the best dis-
criminant power. In this case, the naive Bayesian network is actually acting
as a weighted voting mechanism. Adding temporal features such as before
did not provide the discrimination power expected. We attribute this to the
relatively small size of our datasets. When “ground truth” video is available
for labelling the subject activities (planned for future installations) and more
examples and multi-tasking examples are collected, this feature may show a
higher discrimination power.

Optional attributes Type and Location. Preliminary results show that adding
the attributes using the type of object in which the sensor was installed and
location information such as the before type and before location features to
the exist attribute did not represent a significant improvement in accuracy.
This suggests that the development of activity recognition algorithms that
do not use the “type” and “location” information may be possible.

Accuracy vs evaluation method used. The activities show lower accuracies
for the “percentage of time” evaluation method. Since activities are being
detected from sensor firings, some activities such as watching TV, listening
to music and dressing are represented by sensors firing only at the beginning
or at the end of the activity. This means that there is no information other



Multiclass Naive Bayes Classifier for Subject One

Activity No. Examples E E+BT Random

Guess

Evaluation

Preparing lunch 17 0.25 0.29 0.07
Toileting 85 0.27 0.31 0.07 Percentage of Time
Preparing breakfast 14 0.08 0.06 0.07 Activity is Detected
Bathing 18 0.25 0.29 0.07
Dressing 24 0.07 0.03 0.07
Grooming 37 0.26 0.26 0.07
Preparing a beverage 15 0.07 0.13 0.07
Doing laundry 19 0.09 0.07 0.07

Preparing lunch 17 0.59 0.78 0.30
Toileting 85 0.71 0.71 0.30 Activity Detected
Preparing breakfast 14 0.45 0.45 0.30 in Best Interval
Bathing 18 0.87 0.79 0.30
Dressing 24 0.64 0.41 0.30
Grooming 37 0.89 0.86 0.30
Preparing a beverage 15 0.36 0.36 0.30
Doing laundry 19 0.86 0.78 0.30

Preparing lunch 17 0.50 0.68 0.17
Toileting 85 0.42 0.43 0.03 Activity Detected
Preparing breakfast 14 0.20 0.12 0.07 at Least Once
Preparing a snack 14 0.08 0.05 0.03
Bathing 18 0.70 0.75 0.11
Going out to work 12 0.12 0.00 0.02
Dressing 24 0.21 0.07 0.02
Grooming 37 0.68 0.71 0.05
Preparing a beverage 15 0.22 0.31 0.04
Doing laundry 19 0.27 0.23 0.05

Activities with Less than Six Examples

Work at home(0), Eating(0), Washing hands(1), Sleeping(0), Taking medication(0), Sleep-
ing(0), Talking on telephone(0), Resting(0), Putting away dishes(2), Putting away groceries(2),
Putting away laundry(2), Taking out the trash(0), Lawnwork(1), Pet care(0), Home educa-
tion(0) Going out to school(0), Going out for entertainment(1), Working at computer(0),
Going out to exercise(0), Going out for shopping(2), Listening to music(0), and Watching
TV(3).

Activities Not Recognized Better than Random Guess

Preparing dinner(8), Washing dishes(7), Preparing a snack(14), Going out to work(12), and
cleaning(8)

Table 4. Leave-one-day-out crossvalidation accuracies per class for the multiclass naive
Bayes classifier using the best two combination of features for subject one. E stands
for the exist feature, and BT stands for the before type feature.

than the average duration of the activity represented by the feature windows
to detect the activities during these “dead intervals” of sensor firings.

The evaluation method with the highest detection accuracies per activity
was the “best interval detection”. The classes with the highest “best interval
detection” accuracies (over 70%) were “bathing”, “toileting”, “grooming”,
and “preparing lunch” for the first participant. For the second participant
the higher “best interval detection” accuracies (over 50%) were “preparing
breakfast”, “preparing lunch”, “listening to music” and “toileting”.

Accuracy vs number of sensors. Since activities such as “going out to work”
and “doing laundry” are represented by sensor firings from a single sensor
(door and washing machine respectively), it was expected that they would
show higher detection accuracies than other activities. However, the sensors
were also activated during other activities which decreased their discrimi-



Multiclass Naive Bayes Classifier for Subject Two

Activity No. Examples E E+BT Random

Guess

Evaluation

Preparing lunch 20 0.22 0.22 0.10
Listening to music 18 0.20 0.09 0.10
Toileting 40 0.20 0.23 0.10 Percentage of Time
Preparing breakfast 18 0.30 0.24 0.10 Activity is Detected
Washing dishes 21 0.05 0.11 0.10
Watching TV 15 0.04 0.16 0.10

Preparing lunch 20 0.51 0.48 0.40
Listening to music 18 0.61 0.44 0.40
Toileting 40 0.52 0.48 0.40 Activity Detected
Preparing breakfast 18 0.68 0.59 0.40 in Best Interval
Washing dishes 21 0.51 0.54 0.40
Watching TV 15 0.25 0.52 0.40

Preparing dinner 14 0.38 0.30 0.24
Preparing lunch 20 0.48 0.61 0.26
Listening to music 18 0.66 0.45 0.38
Toileting 40 0.46 0.43 0.10 Activity Detected
Preparing breakfast 18 0.75 0.65 0.16 at Least Once
Washing dishes 21 0.15 0.28 0.09
Watching TV 15 0.08 0.45 0.30

Activities with Less than Six Examples

Work at home(0), Going out to work(0), Eating(0), Bathing(3), Grooming(3), Dressing(5),
Washing hands(0), Sleeping(0), Talking on telephone(4), Resting(0), Preparing a beverage(1),
Putting away dishes(3), Putting away groceries(1), Cleaning(3), Doing laundry(0), Putting
away laundry(1), Taking out the trash(0), Lawnwork(1), Pet care(0), Home education(2),
Going out to school(0), Going out for entertainment(1), Working at computer(5), Going out
to exercise(0), and Going out for shopping(3).

Activities Not Recognized Better than Random Guess

Preparing dinner(14), Taking medication(14), and Preparing a snack(16).

Table 5. Leave-one-day-out crossvalidation accuracies per class for the multiclass naive
Bayes classifier using the best two combination of features for subject two. E stands
for the exist feature, and BT stands for the before type feature.

nant power. The most activated sensors overall for both subjects were the
kitchen door, refrigerator, and cabinets. For subject one, the three other
most activated sensors were the bathroom sink faucet (165), medicine cabi-
net (118), and kitchen drawer #84 (74). For subject two the three other most
activated sensors were the microwave oven (197), garbage disposal (79), and
living room TV (63). The least activated sensors were located in the living
room and hallway area.

Accuracy vs sensors installation locations. The state change sensors were
not appropriate for installation on some useful objects. For example, sensors
were not installed on pans, dishes, chairs, tables and other locations that
could improve the recognition accuracy of for preparing dinner. A new ver-
sion of the tape on sensors in development that uses accelerometry instead of
reed switch sensing will permit a 2-3 times increase in the number of sensors
that can be installed in a given environment. This may improve recognition,
but it also may increase the need for larger training data sets.

Multiclass vs multiple binary classifiers. We have described our implemen-
tation of a multiclass naive Bayes classifier. However, we also tested the sys-
tem with multiple binary classifiers – one per activity. Multiple binary clas-



sifiers do not enforce mutual exclusivity, since each classifier is independent
of the others. On our dataset, the multiclass and multiple binary classifiers
performed with approximately the same accuracy (±5%). However, the mul-
tiple binary classifiers may perform better in future studies as more accurate
activity labels become available with multi-tasking.

Some of the false positives obtained in this work almost certainly resulted
from the fact that a considerable number of short or multi-tasked activities
carried out by the subjects were not labelled in our dataset.

Subject one vs Subject two results. Overall, recognition accuracies for the
first subject’s data were higher than those for the second subject’s data. This
was mainly for two reasons: (1) the number of sensors that were dislodged,
failed and were noisy was higher in the second subject apartment, and (2)
the quality of the labels for the first subject was higher because the sensor
firings for each activity were easier to label. One possible explanation is that
the first subject spent less time at home and the sensor firings were not as
complex as those for the second subject.

Improvement over the random guess baseline. The results shown in Ta-
bles 4 and 5 represent a significant improvement for some activities over the
random guess baseline3.

Even though the accuracy for some activities is considerably better than
chance, it is not as high as expected. The main problems faced were: (1) the
quality and number of activity labels, and (2) the small training set of two weeks.
It is expected that training sets collected over months, better labels generated by
video observation or other methods, and improved versions of the data collection
boards and sensors will improve the detection accuracies. Although the results
presented here are preliminary, we believe they show promise. Experiments are
underway to improve the data collection and annotation process and to acquire
substantially more detailed datasets.

9 Subject Experiences

The studies described here have led to some useful qualitative observations about
subject reaction to the sensor system and the ESM data collection method. For
instance, the participants felt that they became “oblivious” to the presence of
the sensors after a few days of the installation. The first subject reported forget-
ting that the sensors were in her apartment after two days. The second subject
was not even sure where some of the sensors were installed. We suspect the accli-
mation period to more invasive sensors such as cameras would be substantially
longer. One of our subjects told us she would not have agreed to the study if

3 The random guess baseline for the “percentage of time” evaluation method is 1/n,
where n is the number of activities. The random guess is 1 − ((n − 1)/n)i for the
“best interval” and “at least once” methods, where i = (2φ)/4t for “best interval”
and i = activity average duration/4t for “detected at least once”.



it had involved video observations. The second subject would have agreed but
would have restricted cameras from the bathroom.

Subjects had a more difficult time adjusting to the experience sampling de-
vice. They started to find the ESM highly disruptive by the second and third day
of the study. This was probably because of the high sampling rate (15 minutes),
but even with extremely helpful volunteers it has become clear that tolerance for
repetitive sampling of the same activities is low. In short, subjects did not mind
“teaching the computer” about new activities but did not enjoy having to tell
the computer about doing the same activities repetively. The percent of total
ESM prompts responded to was 17% and 24% for the first and second subject
respectively.

Finally, even these simple sensors can impact behavior. The first participant
reported that that being sensed did cause her to alter some behaviors. For ex-
ample, she always made sure to wash her hands after using the bathroom. The
second subject did not report any changes in behavior due to the sensors.

10 Summary

The work described here is preliminary but demonstrates that ubiquitous, sim-
ple sensor devices can be used to recognize activities of daily living from real
homes. Unlike prior work in sensor systems for recognizing activities, the sys-
tem developed in this work was deployed in multiple residential environments
with actual occupants. The occupants were not researchers or affiliated with
the experimenters. Moreover, the proposed sensing system presents an alterna-
tive to sensors that are perceived by most people as invasive such as cameras
and microphones. Finally the system can be easily retrofitted in existing home
environments with no major modifications or damage.
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