
Improving Multiple People Tracking Using Temporal Consistency

Rania Y. Khalaf Stephen S. Intille

Housen: the MIT Home of the Future Project
Massachusetts Institute of Technology

1 Cambridge Center, 4FL
Cambridge, MA 02142, U.S.A.

intille@mit.edu
Technical Report - July 2001

Abstract

This work presents a real-time multi-person or multi-object
tracking algorithm that uses multiple hypothesis reasoning
in time to enforce multi-person match constraints. The al-
gorithm is intended to augment, not replace, existing multi-
person tracking methods. We demonstrate how tracking sys-
tems that use inter-frame feature matching can be improved
by enforcing contextual matching constraints throughout a
1-5 second temporal window. Robust and efficient multiple
hypothesis reasoning in time is achieved for a useful class
of tracking problems using a dynamic programming frame-
work. Results are described for a dataset of 40 minutes of
test video taken from a static, top-down camera and with
two to four people moving about a small room.

1. Introduction and Related Work

Our target application is reliable real-time tracking for per-
ceptual user interface applications of up to four people in
a small room from a single overhead camera. We demon-
strate that the multi-object tracking problem can be formu-
lated in a dynamic programming framework, allowing for
efficient multi-hypothesis temporal reasoning. Prior work
in tracking multiple people has generally assumed that fea-
tures such as color histograms, correlation patches, velocity
estimation, and blob-distance metrics can be used toinde-
pendentlytrack each object of interest. In a few cases, ex-
plicit reasoning about the relationships between objects has
been used to handle brief occlusion events (e.g. [7, 16, 12])
or to reason about contextual constraints between two ad-
jacent frames [10]. Here we take a different approach. We
show that when constraints are enforced and feature evi-
dence is integrated over a relatively long temporal window
instead of simply between frames, matching performance
can be substantially improved; by considering all physically

realizable situations a tracking algorithm can recover from
errors that result from bad short-term feature matching.

The fundamental problem with tracking people is that,
unlike rigid, geometric objects, there are few stable features
to track over time. Color, size, velocity, and shape features
of people all vary dramatically as people move about an in-
door environment. Strengthening the model used for track-
ing using kinematic or dynamic models of human move-
ment has so far proven most useful for tracking single peo-
ple from high-resolution, side-camera views [19]. Instead
of searching for more invariant features or constraints to use
for matching in a short time window (i.e. between frames),
we instead consider the use of temporal consistency to pro-
vide constraint for relatively weak features integrated over
longer temporal intervals.

Most multi-person tracking work has used stereo or color
blob-representations of people that are computed by cluster-
ing pixels that differ from statistical models of the “back-
ground” [18, 10, 13]. The recovered blobs can then be
statistically characterized by shape and color features (e.g
[18]). Generally the algorithms either assume a top-down
view with little full-occlusion [9] or a side view with con-
stant velocity heuristics to handle full frontal occlusion in
pass-by situations [16].

Although blob features can be matched between adja-
cent frames directly, in practice these features are too weak
to provide reliable multiple-object tracking. Prior work ex-
plores some additional sources of constraint. The EasyLiv-
ing tracking system [13] uses color stereo to locate people
blobs, and when one person’s blob occludes another a his-
togram intersection feature is used for matching. The W4
algorithm [6] tracks multiple people in outdoor scenes using
second order motion models of recovered blobs and blob
parts (i.e. body parts recovered using side-view heuristics)
to predict each person’s next location and constrain inter-
frame matching. “Closed world” contextual information

1

about a scene and the relationship between objects being
tracked has been used to select the best pixels to match be-
tween individual frames [9]. Contextual information about
how many people are in an enclosed space has been used
to weight multiple blob features in a match score matrix
to track rapidly-moving and interacting people in real-time
[9].

Other blob tracking systems have used Kalman filter pre-
diction to track positions of blobs between frames [5] and
features such as adaptive templates that update each new
frame [2]. While another approach uses separate trackers
for different targets that combine multiple attributes (color
and contour) of complex objects [15], it is not designed to
track multiple articulated, non rigid, objects with similar
contours such as people in a room.

None of the work mentioned above uses match consis-
tency over a long temporal window to provide additional
tracking constraints; decisions are generally made using just
two adjacent frames and velocity estimation. Any of these
algorithms could use the dynamic programming approach
presented here to consider additional temporal constraints.

Dynamic programming has been used for sub-pixel sized
target tracking to overcome the weakness of the signal [1]
and for improving tracking of single objects [3]. It has also
been used for tracking deformable contours of single ob-
jects [4]. These systems do not use dynamic programming
to explicitly represent multi-person matching. Although the
condensation algorithm [11] has been used to keep multiple
hypotheses of object contours and for tracking similar ob-
jects [14], the framework has not been used to model inter-
object constraints over time.

2 Modeling consistency over time

In this section we describe our general framework for track-
ing. Assume an algorithm exists that can track certain fea-
tures between frames. To extend such an algorithm to multi-
person tracking each person can be tracked independently
from the others; in some cases the proximity of objects may
be used to select features to track or overcome short occlu-
sion situations using constant velocity assumptions [6, 9].

Here we are interested in exploiting the long-term tem-
poral constraintsbetweenthe objects being tracked. We
would prefer that the algorithm defer making any short-term
tracking commitment based on inter-frame feature match-
ing of individual objects and instead wait to find a longer-
term best hypothesis that simultaneously takes into account
the long-term constraints and feature match evidence. We
propose to use the following three temporal constraints. (1)
Spatial continuity: People who enter a “visual merge”1 are

1We define a “visual merge” as any situation where the features being
tracked can no longer distinguish the positions of two objects (e.g. seg-

Frame at t5 Frame at t30 Frame at tn

Make best decision for t1 over window t1-tn using DP

Frame at t1

Context info:
 Prior positions
 and models of
 objects: P1, P2

Decision made
at tn for t1

t1

...

...

B1

B2
B1

P1

P2

Figure 1: The tracking problem. Feature blobs are computed for
incoming sample frames. Contextual information (e.g. the number
of people in the scene, models of each object) is used to compute
the best possible person to blob assignment over a window of time
given all features and constraints. A final decision about the posi-
tions of objects att1 is delayed until evidence from samplest1−tn

is observed.

the same people who leave a merge; people cannot disap-
pear unless there is a known explanation; (2)Continuity in
motion: There is a limit to the amount of distance people
can travel in given amounts of time, and to get fromA to
B requires that an object travel between the positions; (3)
Continuity in appearance: Even though visual features can
provide misleading information in any given frame or for
short windows of time when tracking non-rigid objects, on
average people will tend to look more similar to themselves
than to others in the same space.

These constraints appear straightforward and most track-
ing algorithms enforce them in a local space-time window.
However, here we enforce the constraints both for individ-
ual objects being tracked and for the entire group of objects
being tracked simultaneously; we do this for a window of
several seconds in length. Therefore, we can sometimes
avoid the matching errors that would otherwise be made by
algorithms using relatively weak inter-frame matching fea-
tures.

Figure 1 illustrates the matching problem. Assume some
algorithm identifies feature clusters (e.g. difference blobs,
B) in incoming framest1 − tn and that the tracking algo-
rithm has contextual knowledge such as the starting posi-
tion of the objects in the scene and feature models of those
objects. The goal is to assign each known person,P with
someB but where it is assumed severalP may be in one
blob. SomeB may actually be spurious due to noise or seg-
mentation inaccuracies.

We are interested in selectingP to B matches that are
globally consistent across the scene and that integrate fea-
ture evidence over the entire temporal window,t1 − tn, tak-
ing into account the constraint introduced by the patterns of
movements of the group as a whole. Although the algorithm
can make a preliminary best guess at assignment as soon as

mentation merges the objects).

2

a new frame arrives, a final assignment is delayed until a
temporal window is observed. Samples are not necessarily
obtained from every incoming frame or at set intervals. In
this work, we use temporal intervals of up to 5 seconds with
500 ms delays between samples.

2.1 Multiple hypothesis reasoning using DP

We cast the temporal continuity problem in a first-order
Markovian framework that can be solved efficiently us-
ing dynamic programming (DP). Match decisions are made
over a window of time. As opposed to making a match de-
cision with each new incoming frame or keeping only a few
top match hypotheses and assuming smooth trajectories[8],
a graph is used to represent all physically realizable tracking
decisions that could be made during this windowwithout
any velocity filtering and prediction. The graph is designed
to enforce the constraints between the objects being tracked.

Figure 2a shows a portion of such a graph for two incom-
ing samples from times,tn andtn+s, wheres is an arbitrary
sample time. For each sample, the number of objects in the
scene is known, as is feature models of those objects. Also
known are the clusters of match features,Bi, wherei varies
from frame to frame depending on the configuration of ob-
jects and noise. Each new sample adds a new “stage” to
the graph, and each stage represents all possible object (Pi)
to segmented blob (Bi) matches where eachP must be as-
signed to aB. For example, stagetn has 3 blobs and 3 peo-
ple. Two of the nodes in Figure 2a are expanded to show
two possible match situations. All together, if there areb
blobs andp people objects there arebp nodes in a stage.
Stagetn has 27 nodes and stagetn+s has 8 nodes.

Adjacent stages are fully-connected with links that each
have a transition cost. For example, the highlighted link
in Figure 2a shows a transition from a state whereP1 is
assigned toB1 in tn, P2 andP3 are assigned toB2, and all
three objects have moved to the blob labeledB1 in tn+s. A
cost is associated with this transition that depends upon how
physically realizable it is and how well the model features
of eachPi match to theBs in tn andtn+s.

Given a starting node, a dynamic programming algo-
rithm can find the lowest cost path through the graph. With
an appropriate cost function for the links encoding long-
term constraints between match decisions in a Markovian
way, this path will represent the best match across all the
data observed in the entire window. The key observation is
that the temporal continuity constraints can be represented
as node transitions costs.

Figure 2b conceptually demonstrates the benefit of such
an approach for a tracking problem where two people walk
towards each other, walk adjacent for a while, and then walk
away. The “people models” boxes represent the feature
models for each object (i.e. the closer the color, the better

the feature match). Stagetn contains two people,P1 and
P2, in known positions (assigned to positions ofB1, B2)
that have been committed. Typically when people are mov-
ing quickly, the observed features of eachP vary as the per-
son moves about the environment, but the features are still
consistent over time.

The leftmost graph represents all possible match situa-
tions from the committed stage to stage 4 attn+3s; the DP
best path considering stages 1-4 is highlighted. However,
when stages 3, 4, and 5 are considered, evidence mounts
that the match decision made at stage 3 was erroneous. The
right graph illustrates how the original graph changes when
the new stage 5 is added. The current best decision for stage
1 is committed and stage 0 (sampletn) is dropped from the
window. Stage 5 is connected to the end of the graph. Now
the reasonable feature match from stage 4 and the good fea-
ture match from stage 5 overwhelm the bad feature match
from stage 3. Even though by stage 5 physical continuity
of motion might prohibit an instantaneous tracker from al-
lowing a switch, our network stores all potential realizable
situations and still allows a switch if it results in a physically
consistent path over time. DP finds the new best path (high-
lighted). Using proximity, the network keeps track of when
it was possible for assignment swaps to occur. While this
example implies that color is the feature of interest, other
features and weighted combinations of features can also be
used.

In summary, even if feature evidence initially suggests
an incorrect match, as more evidence is acquired over time,
the best path is guaranteed to be selected. The path score is
dependent upon the transition cost from nodent−1 to nt:

c(nt−1, nt) =
1
N

(aM + (1)

People∑
i=0

fdist(Pi, nt−1, nt,∆t) +

People∑
i=0

Features∑
j=0

αj(fj(Pi, nt−1, nt)))

whereN is the number ofPs in the room and normal-
izes the score,a is the total number of people merged mi-
nus the number of merges,M is a constant merge cost,
fdist(Pi, nt−1, nt, t) is a distance score for the distancePi

moves from its blob innt−1 to its blob innt including a
penalty when this distance is too large for timet, αj is a
weighting constant for featurej, andfj(Pi, nt−1, nt) is the
cost of matching a particular feature,fj , from personi’s
blob in the nodent−1 with personi’s blob in the new node
nt.

The merge cost,M , is a constant used to penalize the
system for assigning multiple people to the same blob. If
this penalty is not used, the algorithm may prefer to keep

3

Known: P1, P2, P3
Sample
tn B1

B3

B1

B2

P1 match B1
P2 match B2
P3 match B2

B3 empty

P1 match B1
P2 match B3
P3 match B2

Known: P1, P2, P3
Sample
tn+s B1

B2

P1 match B1
P2 match B1
P3 match B2

+ 21 more nodes

P1 match B1
P2 match B1
P3 match B1

...
...

...
...

...
...

...
...

...
... ...

...
...

...
...

...
...

...

...
...

...
...

...
...

...

...

...

Cost of:
tn

B1
P1

P2
P3

tn+1

P2
P3

P1

(in tn+s-tn)

s

People: P1, P2

Stage 2

B1

P1

Committed
decision

People models: P1
 P2

P2

B2

B1
tn tn+1s

People: P1, P2

Stage 5

B1

B2

tn+4s

People: P1, P2

Stage 4

B1

B2

tn+3s

People: P1, P2

Stage 3

tn+2s

Last
commit

Stage 1 Stage 4Stage 3Stage 2

P1 B2
P2 B1

P1 B2
P2 B1

P1 B2
P2 B2

P1 B1
P2 B1

P1 B1
P2 B2

P1 B1
P2 B1

P1 B2
P2 B1

P1 B2
P2 B2

P1 B1
P2 B1

P1 B1
P2 B2

P1 B2
P2 B1

P1 B2
P2 B2

P1 B1
P2 B1

P1 B1
P2 B2

...

Last
commit

Stage 1 Stage 4Stage 3Stage 2

P1 B2
P2 B1

P1 B2
P2 B1

P1 B2
P2 B2

P1 B1
P2 B1

P1 B1
P2 B2

P1 B1
P2 B1

P1 B2
P2 B1

P1 B2
P2 B2

P1 B1
P2 B1

P1 B1
P2 B2

P1 B2
P2 B1

P1 B2
P2 B2

P1 B1
P2 B1

P1 B1
P2 B2

P1 B2
P2 B1

P1 B2
P2 B2

P1 B1
P2 B1

P1 B1
P2 B2

Stage 5
Last commit

Stopped

B1

B2

Stopped

(a) (b)

Figure 2: (a) Two stages of the temporal window graph, as described in the text. (b) By representing all possibly physically realizable
hypotheses in a Markovian framework, feature evidence accumulated in time – even when objects are far apart – can lead to a revised
hypothesis that corrects tracking mis-assignments, as described in the text.

people previously merged in the same merged position even
when one person is actually moving away and should be as-
signed to another blob. It is preferable to penalize merges
instead of empty blobs because a path should not be penal-
ized for not assigning aP to a blob that resulted from noise.

2.2 Typical complexity and model updating

Encoding constraints in first-order Markovian link costs al-
lows an enormous number of hypotheses to be searched effi-
ciently using dynamic programming techniques. Since each
stage in the temporal window graph represents a full match
state describing how all tracked objects match to all known
blobs, there arebp nodes, whereb is the maximum num-
ber of blobs in any stage andp is the number of people
known to be in the room. Therefore, since each stage of the
graph is fully connected to adjacent stages, dynamic pro-
gramming can find the best-cost path inO(nb2pmax

max) where
n is the number of stages andpmax is the maximum num-
ber of people ever in the room during a sequence andbmax

is the maximum number of feature blobs in any sampled
frame. For many useful people tracking problems in small
rooms,bmax < 6 andpmax < 5. Typical case performance
can be substantially better, as shown in Section 4.3.

Two issues remain. First, for eachP known to be in the
scene we need feature models. These can be static mod-
els, but a better approach is to update the models using
the tracking algorithm. In this work we do so by updating
models only in the following situation: (1) when a decision
has been finalized because the entire temporal window has
been considered, and (2) when the final tracked position of

this object indicates that it is isolated from other objects;
this situation presents a good opportunity to update features
without segmentation confusion from other objects being
tracked.

A second issue is initialization – keeping track of how
manyPs are in the room. The temporal window graph can
be extended so that it also represents contextual informa-
tion such asPi left the room andPi entered the room if a
special region of the room is designated for entry/exit (i.e.
a door) (see [10] for an example of using a “door” in an
instantaneous-decision tracker). For the results described
here, however, we have manually initialized the starting po-
sitions of objects and no objects enter or leave the room
during each test video clip.

3 Real-time implementation

We have implemented a real-time version of the multiple
hypothesis temporal reasoning algorithm. Our scene con-
tains a static camera observing a room from above (see im-
age in Figure 4). We use motion-differencing to obtain ob-
ject blobs and use color and distance metrics for inter-frame
matching features.

Blob extraction proceeds as follows. The room is emp-
tied of all people and a statistical model of the background
is created using a YUV color space. Incoming images are
compared to the background model using the Mahalanobis
distance. “Foreground pixels” are dilated and contiguous
pixels are merged into “blobs.” The blobs correspond to
a single person, multiple people standing close together,

4

shadows, moved objects, or camera noise.2 If two or more
objects are close to each other, the background subtraction
will yield one blob for all of them.

Each blob is assigned a position (centroid of the bound-
ing box), a bounding box, a color histogram (computed us-
ing the foreground image pixels in the blob), and an arbi-
trary label (e.g.B3).

The transition cost function in equation 1 requires that
for any transition between two matching stages a distance
and a feature cost be computed. Both computations must be
fast because they are computed for all possible transitions
between all possible matching states each time a new sam-
ple is received. We set,M , the merge penalty to be .35,
which was found by trial and error.

3.1 Distance cost

We call (fdist(Pi, nt−1), nt,∆t) from equation 1 thedis-
tance penalty. This value is computed by imposing an inter-
stage, time-dependent penalty on the distance score,ds. ds

is the distance between the blob that personPi is assigned
to in nodent−1 and the blob thatPi is assigned to in node
nt+s. We use a fast heuristic to compute this distance and
three cases must be considered. For clarity, imagine over-
laying the two blobs on the same image, as in Figure 3a.
If the bounding box of one blob completely encloses the
bounding box of the second blob, the blobs are assumed
to completely overlap, as shown in Figure 3b, andds =
0. If the bounding boxes of the blobs partially overlap as
in Figure 3c,ds = CPO, whereCPO is a partial over-
lap penalty (6 cm in our implementation). Finally, if the
bounding boxes do not overlap, as shown in Figure 3d, then
ds = d+CNO, whereCNO is a no-overlap penalty (16 cm in
our implementation), andd is an efficient approximation of
the shortest distance between the contours of the two blobs
estimated by finding the length of linee1 to e2, where line
c1, c2 connects the centroids of the two blobs ande1 ande2

are on the blob contours.3

TheCNO andCPO costs are used to bias the algorithm
towards tracking assignments that keep objects in the same
place unless good features are observed that overwhelm the
penalties. Similarly, by settingCPO to be less thanCNO,
the algorithm is biased towards situations such as Figure 3c
where two blobs are largely overlapping over those where
blobs are very close but not overlapping.

The ds is then scaled by the allowable distance,Da =
Va ∗ ∆t, whereVa is 145 cm/s, just a bit less than a typical

2Our implementation actually uses an adaptive background algorithm
that slowly adapts any unoccupied regions of the space, but this en-
hancement does not impact the results discussed here.

3Distances between edges of blobs is preferable to distance between cen-
troids because when an object is merged into a multi-person blob and
then splits the centroid of the two blobs can move more than the object
itself physically could.

2

c1

c
e1

e2

d (d)
c1

c2

(c)(b)

mask image tn

overlay

mask image tn+s (a) (e)

0 1 2 3

40

20

0

f di
st

(d
m

,t)

d=dm/(Va*t)

linear 0-1

sigmoid >1

ds = 0 ds = CPO ds = dm + CNO

Figure 3: (a) Blobs fromtn andtn+s are overlaid on the scene co-
ordinate system. (b) When bounding boxes around blobs indicate
that blobs are overlapping, there is no distance score. (c) When
bounding boxes partially overlap, a partial-overlap penalty is used.
(d) When bounding boxes do not overlap, a fast estimate of the
distance between contours is computed and added to a no-overlap
penalty.

walking velocity. To get the value of the distance penalty,
the scaled distance score is plugged into a function,g(x),
that returnsx if the distance score is less or equal to the al-
lowable distance; otherwise, it substitutesx into the penalty
sigmoid. Therefore,fdist(Pi, nt−1, nt,∆t) = g(ds/Da),
whereg(x) is

g(x) =

{
x if x <= 1

50

e
−x+2
0.15 +1

+ 1 otherwise

Intuitively, matches that assume that large objects move un-
realistically quickly are heavily penalized.

3.2 Color feature cost

In the results presented here, we use only one feature – color
histogram intersection [17]. Therefore,αj in equation 1 is
1. Color histogram intersection returns a match score of
how similar two blob image regions are based on their color
distributions; it is linear in the number of elements in the
histogram and robust to multiple views, scales, and occlu-
sions [17].

We definefj(Pi, nt−1, nt) in equation 1 – the cost con-
tribution for a state transition based on feature-j (color his-
togram matching) – to be simply the histogram intersection
score found matching a stored histogram for personPi to
the blob thatPi has been assigned to in the next node,nt.

Given a model histogram for a person,M , and a blob
histogramI with n buckets each, the algorithm returns the
number of corresponding pixels of the same color that are
found between the image and the model, normalized by the
number of pixels in the model. Therefore, the equation for
the histogram intersection score between two blobs is:

H(I,M) = 1 −
∑n

j=1 min(Ij
SM

SI
,Mj)∑n

j=1 Mj
(2)

5

whereSM andIM are the sizes of the model and blob
image histograms respectively. A low score is a better
match.

To make histogram intersection more robust to changes
in illumination, in this work we construct UV histograms
(no Y) with 8 bins on each axis. We also use a heuris-
tic where each person is modeled with up to 9 histograms
which are associated with sections in the room (as in [13]).
The algorithm uses the histogram closest to the blob’s lo-
cation when performing matching, allowing for variation in
appearance of a person due to lighting differences and view-
points in different parts of the scene. If no histogram model
is available for an object, a neutral score of .5 is selected.

Each object in the space needs a histogram model. This
model is acquired using the tracking system by taking his-
togram samples when a person is not near any other people.
Whenever the tracker commits a decision, the histogram of
each isolated person from that time is acquired and used as
the histogram model whenever each person is near that lo-
cation of the scene again.

4 Evaluation

The real-time version of this algorithm was run on video
clips of multi-person interaction acquired from a camera
mounted above the 6m by 4m room shown in Figure 4.4

The clips were acquired by asking between 2-4 people to
walk around randomly and to meet and talk to each other
as they walked around. For some sequences, people were
asked to wear a bright color. In most of them, however,
people walked in with whatever they were wearing the day
the video was shot. The eight sequences vary in length be-
tween two to 10 minutes.

Generally, the activity is as follows: people meet in dif-
ferent parts of the room multiple times, in groups of two,
three, or four. Some people sit on the floor or on the chairs,
jump up and down, wave their arms about, and lean back-
wards and forwards as they pass under the camera. Clips of
our test image sequences with tracking results overlaid can
be viewed at [submitted file].

4.1 Error classifications

Single-person tracking is robust. Opportunities for error oc-
cur when multiple people interact. We classify the opportu-
nities for tracking error by considering “merge” events, i.e.
when the difference blobs of two or more people merge into
a single blob because of proximity. The number of misas-
signments the tracker can make after a merge is proportional
to the number of people in the merge (e.g. a 3-person merge

4Testing was performed on a 300 MHz dual processor Pentium II system
with 512 MB RAM running unoptimized Java code.

Frames
Grouped MSE GPE

632 45 17

Figure 4: The image shows a situation where three people have
been improperly segmented into two blobs (indicated by bound-
ing boxes) The table indicates how many “in-merge” errors were
encountered in our dataset.

can lead to a maximum of 3 misassignments). We classify
an n-person merge as creatingn “post-merge-assignment
error” opportunities.

Two more errors can occurduring merges, as illustrated
by Figure 4, when the blob detection algorithm fails to seg-
ment blobs in a perceptually-meaningful way. One occurs
when different parts of different people are marked as sep-
arate blobs: “merge segmentation errors” (MSE). The other
case occurs when people are in a group and the algorithm
picks up a few overlapping blobs in which one corresponds
to a complete person from the group and that person is mis-
labeled: “group proximity errors” (GPE).

4.2 Results

The algorithm was tested with 1 (instantaneous decision),
2, 5, and 10 temporal window stages. 500 ms elapsed be-
tween each stage’s sample, so the temporal windows were
of length 1s, 2.5s, and 5s for the 2, 5, and 10 stage runs
respectively. In the instantaneous case, the algorithm com-
mits to a decision immediately upon receiving a new frame
and ran at 5Hz.

As shown in Figure 5, the number of errors declines as
the temporal window size is increased. Even using a tempo-
ral window of only 1s improves the results. Most mistaken
assignments (12 out of 48 with the longest window) oc-
curred when four people were in the room due to the size of
the people relative to the size of the room. Four people had
little space to move independently in the room and would
often go from one merge to another quickly without giving
the tracker a chance to get a clear shot of people leaving the
group. The remainder of the errors result from three of the
people in one sequence having similarly-colored clothing.
Not surprisingly, when people look the same, the tracker is
more likely to suffer from a post-merge assignment error.5

5E.g. One error is caused by one person wearing a navy and white shirt
and navy pants and another person wearing navy pants and a white
jacket with black stripes. The color feature, histogram intersection, uses
no spatial information, so post-merge assignment errors between these
two people are incurred on occasion.

6

Post-Merge Assignment Errors
In Room Merges 1 stage 2 stage 5 stage 10 stage
2 people 4 3 0 0 0
3 people 54 22 3 0 0
4 people 48 19 17 14 12

Figure 5: The number of people mistakenly assigned after a merge
for the 40 minutes of test video for window sizes of 1 (instanta-
neous decision), 2 (1s), 5 (2.5s), and 10 (5s).

Min. edges Max. edges Ave. edges
Sequences per stage per stage per stage
2 people 1 36 7
3 people 1 5398 780
4 people 1 50047 4290

Figure 6: Using distance pruning substantially reduces the num-
ber of links the DP algorithm must traverse from the max number
(for our dataset) to the average number, improving performance.

More sophisticated features that use body shape [6] might
alleviate some of these ambiguities.

The segmentation and proximity errors, counted in Fig-
ure 4, did not impact tracking assignment. These errors re-
sult in small shifts in position – jitter – during merge events.

4.3 Complexity

The search complexity can be reduced by pruning the graph.
Instead of simply assigning a large cost when an object
match requires an unnaturally large movement of the object,
the links can be removed from the graph entirely. In the best
case, when all objects are far apart in the scene, the graph
can be reduced down to a single chain of nodes. In the worst
case, however, the cost remains O(nb2pmax

max) as described in
Section 2.2. Figure 6 shows the effect of pruning on the 40
minutes of test video: in the case of 4 people, the number
of links the DP algorithm must consider is reduced by 91%.

The results in Figure 5 for the four person runs were ob-
tained with distance pruning, which ensured that samples
could be gathered at 500 ms intervals. The algorithm does
accommodate a variable sampling rate, allowing for pro-
cessing of data only when it is most informative. This af-
fords another opportunity for limiting complexity by only
adding stages without “fragmented” blobs that are not either
definitely split or definitely merged. Avoiding processing
frames just before a merge or after a split event can reduce
spurious blobs that increasebmax.

5 Summary

The algorithm presented here is meant to augment, not re-
place, existing multi-person and object tracking algorithms.
We have shown how to efficiently layer temporal consis-
tency constraints over inter-frame feature matching pro-
cesses, which can lead to more robust tracking performance
by explicit reasoning about object interactions. The algo-
rithm can be implemented in real-time for a useful class of
tracking problems. We believe that this approach can be
extended to incorporate more features and contextual con-
straints.

References

[1] J. Arnold, S. Shaw, and H. Pasternack. Efficient target
tracking using dynamic programming.IEEE Trans.
on Aerospace and Electronic Systems, 29(1), January
1993.

[2] D. Beymer and K. Konolige. Real-time tracking of
multiple people using stereo. InProc. of the IEEE
Frame Rate Workshop, Corfu, Greece, 1999.

[3] T. Darrell, D. Demirdjian, N. Checka, and
P. Felzenswalb. Plan-view trajectory estimation
with dense stereo background models. AI Memo
2001-001, MIT, February 2001.

[4] D. Geiger, A. Gupta, L.A. Costa, and J. Vlontzos.
Dynamic programming for detecting, tracking, and
matching deformable contours.IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 17:294–302,
March 1995.

[5] W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee.
Using adaptive tracking to classify and monitor activ-
ities in a site. InProc. Computer Vision and Pattern
Recognition, pages 22–29, 1998.

[6] I. Haritaoglu, D. Harwood, and L.S. Davis. W4: Real-
time surveillance of people and their activities.IEEE
Trans. on Pattern Analysis and Machine Intelligence,
22(8), August 2000.

[7] D.P. Huttenlocher, J.J. Noh, and W.J. Rucklidge.
Tracking non-rigid objects in complex scenes. In
Proc. Int. Conf. Computer Vision, pages 93–101, May
1993.

[8] V.S.S. Hwang. Tracking feature points in time-varying
images using an opportunistic selection approach.Pat-
tern Recognition, 22(3):247–256, 1989.

7

[9] S.S. Intille and A.F. Bobick. Closed-world tracking.
In Proc. of the Fifth Int. Conf. on Computer Vision,
pages 672–678, June 1995.

[10] S.S. Intille, J.W. Davis, and A.F. Bobick. Real-time
closed-world tracking. InProc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, pages 697–
703, Los Alamitos, CA, June 1997. IEEE Computer
Society Press.

[11] M. Isard and A. Blake. Condensation – conditional
density propagation for visual tracking.Int. J. of Com-
puter Vision, 29(1):5–28, 1998.

[12] D. Koller, J. Weber, and J. Malik. Robust multiple
car tracking with occlusion reasoning. InProc. Eu-
ropean Conf. Computer Vision, volume 1, pages 189–
196, May 1994.

[13] J. Krumm, B. Meyers, B. Brumitt, M. Hale, and
S. Shafer. Multi-camera multi-person tracking for Ea-
syLiving. InProc. of the 3rd IEEE Int. Work. on Visual
Surveillance, July 2000.

[14] J. MacCormick and A. Blake. A probabilistic exclu-
sion principle for tracking multiple objects. InProc.
Int. Conf. Computer Vision, pages 572–578, 1999.

[15] C. Rasmussen and G. Hager. Joint probabilistic tech-
niques for tracking multi-part objects. InProc. IEEE
Conf. on Computer Vision and Pattern Recognition,
pages 16–21, 1998.

[16] R. Rosales and S. Sclaroff. 3D trajectory recovery for
tracking multiple objects and trajectory guided recog-
nition of actions. InProc. of the IEEE Conf. on Com-
puter Vision and Pattern Recognition, volume 2, pages
117–123, June 1999.

[17] M. J. Swain and D. H. Ballard. Color indexing.Inter-
national Journal of Computer Vision, 7:11–32, 1991.

[18] C. Wren, A. Azarbayejani, T. Darrell, and A. Pent-
land. Pfinder: Real-time tracking of the human body.
IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 19(7):780–785, July 1997.

[19] Y. Yacoob and L.S. Davis. Learned models for es-
timation of rigid and articulated human motion from
stationary or moving camera.Int. J. of Computer Vi-
sion, 36(1):5–30, 2000.

8

