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ABSTRACT
Ubiquitous, context-aware computer systems may ultimately
enable computer applications that naturally and usefully re-
spond to a user’s everyday activity. Although new algo-
rithms that can automatically detect context from wearable
and environmental sensor systems show promise, many of
the most flexible and robust systems use probabilistic de-
tection algorithms that require extensive libraries of train-
ing data with labeled examples. In this paper, we describe
the need for such training data and some challenges we have
identified when trying to collect it while testing three context-
detection systems for ubiquitous computing and mobile ap-
plications.
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experience sampling, user interface design

ACM Classification Keywords
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INTRODUCTION
Traditional desktop computing applications are reactive –
they wait until the user expresses an intent via a keyboard
and mouse before taking action. Context-aware applications,
however, can use sensors to infer a user’s activity to automat-
ically determine good times and places to proactively present
or request information [1]. One of the key difficulties in cre-
ating useful and robust ubiquitous, context-aware computer
applications is developing the algorithms that can detect con-
text from noisy and often ambiguous sensor data. To date,
most context-aware prototype systems have assumed a one-
to-one mapping from one sensor reading (e.g. GPS location)
to some action (e.g. display place-specific information). A
challenge is to create context recognition algorithms that de-
tect complex activities such as “cooking” and “walking” that
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differ greatly across users and that are not defined by a single
sensor activation.

Researchers in computer vision, speech processing, machine
learning, and other computational perception domains have
found supervised learning algorithms to be highly effective
at complex recognition of activity by computer. These algo-
rithms use training sets of sensor data that have been anno-
tated with activity labels to construct computational models
that capture the variability in the examples and the uncer-
tainty in the sensor measurements. New sensor readings are
then compared with the models and classified using maxi-
mum likelihood reasoning or other statistically-based match-
ing techniques. With good training sets, supervised learn-
ing techniques can be significantly less brittle than context-
detectors that employ hand-constructed rule-based models.
Further, supervised learning techniques can be used to cre-
ate context detection algorithms that are customized to indi-
vidual users in the field by training the algorithms on user-
specific datasets.

Although they can be effective, the supervised learning con-
text recognition algorithms raise new user interface design
challenges. Much user activity is situated – the setting will
influence behavior. Therefore, algorithms that detect this be-
havior must be trained using representative examples of the
activity acquired in situ. This paper is about the challenge of
acquiring these examples. We argue that context-aware ap-
plications will need to be extended so that the labeled train-
ing sets required by the context-detection algorithms can be
obtained from the users themselves after the applications are
deployed. We report on observations made while conducting
three studies. Each study attempted (with varying degrees
of success) to acquire supervised learning training data from
users in non-laboratory environments. Our studies were with
subjects who were participating for compensation and to ad-
vance engineering research. However, even with this highly
motivated group, the difficulty of developing strategies for
acquiring good training data from users quickly became ap-
parent. We suggest some design guidelines and flag in situ
collection of training data from end users of context-aware
ubiquitous computing applications as an important research
topic that merits future work.

CONTEXT FROM PHYSICAL ACTIVITY
The type of context information an algorithm requires im-
pacts the type of supervised training data a system might



need to collect. In this paper we focus on context informa-
tion that can be acquired from a person’s physical activity,
as opposed to other types of context (e.g. location-based,
emotional). Most everyday physical activities roughly fall
into one of two categories. Some activities, such as walking,
running, scrubbing, and vacuuming, require a user to engage
in highly repetitive motion of the body and limbs. For these
activities, wearable mobile computing sensors such as ac-
celerometers can feed data into classification algorithms that
can often robustly detect the activities. Because the user’s
movement is dictated by the structure of the human body,
classification algorithms that interpret the sensor data may
require less user-specific supervised data to be collected to
provide accurate activity recognition. Our results discussed
shortly support this conclusion [3]. Other types of activities
may be easier to detect by modeling repetition in the use of
objects in the environment rather than in the movement of
the user’s body. For instance, to detect “cooking” it may be
easier to learn that cabinet 5 typically opens before cabinet
3, and sometime approximately 45 minutes after that, appli-
ances 2 and 5 will run. The user’s limb and body movement
may be highly variable, but if sensors can detect the use of
specific doors, drawers, switches, and appliances, classifiers
can be trained to detect some common household activities
[16]. Because sensor readings for some types of user activity
will be highly dependent upon the user, the user’s location,
the structure and sensors in the user’s environment, and other
contextual factors (e.g. time, date, history of activities), user-
specific training data for supervised learning algorithms for
many activities will be required each time a new user ini-
tializes a context-aware system. Acquiring training data for
physical activity is particularly challenging, in part, because
acquiring a single example of a particular activity can take a
substantial amount of time.

If applications will ultimately require that supervised learn-
ing training data be acquired from end users in the field, two
problems must be addressed. First, researchers must begin to
make efforts to test context-detection algorithms on data that
is acquired and annotated not by the researchers themselves
but by the end users. Second, researchers must identify user-
acceptable design strategies for in situ acquisition of training
examples, even for activities of interest that take a long time
to complete or that are intimately tied to the environment.
We use case studies from our research focused on the first
challenge [9] to report on some observations relevant to the
second.

SPEECH RECOGNITION ANALOGY
The use of supervised learning algorithms for context recog-
nition has been motivated, in part, by the success of continu-
ous speech recognition systems. These systems are powerful
because of the training data exploited by the classification al-
gorithms. State-of-the-art speaker-dependent speech recog-
nition systems such as desktop dictation software use large
labeled speech corpi in combination with additional training
sets acquired from the intended user that customize the mod-
els to the individual [20]. Speaker independent systems must
be trained on even larger corpi of labeled speech data.

The user training for speaker-dependent speech recognition
systems typically consists of a known passage that must be
read by the user, usually taking about 30 minutes. The user
also loads previous text documents into the system so the
speech recognition algorithm can learn about the user’s par-
ticular vocabulary. Accurate speech recognition relies upon
this training on individual speech to account for individual
variation in word pronunciation and to reduce uncertainty in
sentence-level recognition [20].

Compare a speech recognition system with a context-aware
system that must detect which activities a user is performing:
walking, sitting, cooking, vacuuming, etc. What is the anal-
ogous user training step? The equivalent of having a user
read a passage might be to require a user perform a series
of actions in a particular order. Realistically, however, be-
cause some of these activities may be complex and time con-
suming (e.g. cooking), a user cannot be expected to repeat
long sequences of activities in a script-like fashion. Even
if the user could be asked to do this, the behavior observed
by the sensors will not be as complex as natural behavior.
The analogy to loading previous text documents would be
to provide lists of typical activities and their temporal se-
quencing. Users will not have this information, except at the
coarsest level (e.g. “I eat dinner about 6:30 every night”).
In short, the context-aware user interface designer must cre-
ate not only the context-aware application, but the applica-
tion used to gather training data required by the supervised
learning context-detection algorithms. A design challenge is
that this software must acquire examples without becoming
disruptive.

Some activities such as standing, walking, running, jumping,
and sitting may be analogous to “words,” because the struc-
ture of the human body may constrain the way the activi-
ties can be accomplished so that they can be detected from
a large person-independent training set using on-body sen-
sors. As with word pronunciation, some variability in style
(e.g. differences in walking due to aging) may be captured in
large person-independent training sets. Sequences of word-
level activities can be thought of as “sentences.” “Going to
work” could be a sentence level activity involving sequences
of walking, standing, sitting, and climbing stairs. Given
a sufficiently large training set, transition probabilities be-
tween the word level activities could be computed much as
bi-grams and tri-grams are computed for continuous speech
recognition. Although algorithms such as hidden Markov
models may work well for recognizing discrete words and
continuous speech [20] and show some promise for activ-
ity recognition, collecting sufficient data to train the Markov
models to work in non-speech domains is a significant user
interface challenge for ubiquitous, context-aware systems.
Whereas sentences in speech take seconds to utter, sentence-
level physical activities may take minutes or hours to com-
plete.

Beyond the size of the data set, the quality of the data is also
critical for effective supervised learning. Specifically, it is
essential to verify activity recognition systems on data col-
lected under naturalistic circumstances because laboratory



environments may artificially constrict, simplify, influence,
or change activity patterns. For instance, laboratory acceler-
ation data of walking displays distinct phases of a consistent
gait cycle that can aide recognition of pace and incline [2].
However, acceleration data from the same person outside of
the laboratory may display marked fluctuation in the relation
of gait phases and total gait length. In a naturalistic environ-
ment, the person is less aware of the fact that his walking is
monitored and may assume a more relaxed, unconventional
gait. Furthermore, traffic patterns and mood may frequently
alter the person’s walking pace and style. Consequently, a
highly accurate activity recognition algorithm trained on lab-
oratory data may rely too heavily on distinct phases and pe-
riodicity of an activity. The accuracy of such a system may
suffer when tested on naturalistic data, where there is greater
variation in behavior.

EXAMPLES FROM NATURAL SETTINGS
Most work on detection of user activity relies on data col-
lected from subjects under artificially constrained labora-
tory settings to validate recognition results. For instance,
researchers testing systems that detect activity from mobile
sensors typically test the systems on just a few people, usu-
ally the researchers themselves or their colleagues [7, 15, 24,
2]. Researchers evaluating data collected in natural, non-
laboratory settings typically only use limited data sets col-
lected from one individual [23]. In some cases prototypes
are developed and run in natural settings, but quantitative
performance is not reported because supervised training data
is not obtained [12, 14, 13]. Research using naturalistic data
collected from multiple subjects has generally focused on
recognition of a limited subset (e.g. nine or fewer) of ev-
eryday activities. For recognition of activity from mobile
computers, these consist largely of ambulatory motions and
basic postures such as sitting and standing [8, 6] that may
require limited training data because they are strongly con-
strained by human anatomy. Consequently, it is not clear
how well any of these systems will perform recognizing a
variety of everyday activities for a diverse sample popula-
tion under real-world conditions. Training data for particu-
lar individuals may be required to obtain good recognition
performance outside of the laboratory.

While exploring these issues, we have implemented technol-
ogy for acquiring user activity sensor data from natural set-
tings [9], and we have deployed the systems in three types of
studies to acquire data for training supervised learning algo-
rithms. We briefly describe each study type and use the ex-
amples to discuss the challenges we have encountered when
trying to obtain training data from end users in situ.

CASE STUDY 1
Mobile computing devices such as phones, watches, and PDAs
are becoming increasingly powerful computers. Augmented
with sensors such as accelerometers they can be used to sup-
port context-aware mobile applications that respond to the
activities of the user. Past work has demonstrated 85% to
95% recognition rates for ambulation, posture, and other ac-
tivities using acceleration data [6, 14, 15, 8, 23, 2, 13]. Ac-
tivity recognition has been performed on acceleration data

collected from the hip [15, 23, 2] and from multiple loca-
tions on the body [6, 14, 8]. The energy of a subject’s accel-
eration can discriminate sedentary activities such as sitting
or sleeping from moderate intensity activities such as walk-
ing or typing and vigorous activities such as running [18,
17]. See [3] for a complete review of recognition of activi-
ties from accelerometer data.

Although the literature supports the use of acceleration for
physical activity recognition, most prior work on activity
recognition using acceleration relies on data collected in con-
trolled laboratory settings [7, 15, 24, 2]. Additionally, prior
work focuses on recognizing a special subset of physical ac-
tivities such as ambulation, with the exception of [8] which
examines nine everyday activities. Interestingly, [8] demon-
strated 95.8% recognition rates for data collected in the lab-
oratory but only 66.7% recognition rates for data collected
outside the laboratory in naturalistic settings. These results
suggest that more work is warranted on recognizing a broad
array of everyday activities in naturalistic, uncontrolled en-
vironments. In addition, more work is needed on the type
of training data required for useful activity recognition per-
formance. Recognition accuracy rates of 80% to 95% can
be achieved for postures and ambulatory activities using ac-
celerometer data without individual training – where datasets
from multiple people are aggregated into one training set
[15, 8, 23, 21]. However, this may not be the case for more
complex everyday activities. Although comparisons of ac-
tivity recognition performance with and without the use of
individual training is lacking, recognition accuracy for cer-
tain activities such as ascending stairs has been shown to im-
prove through use of individual training [11]. Additionally,
for an activity such as tooth brushing, individuals may dis-
play significant variations in brushing vigor, duration, and
posture. In such cases, individual training could improve
discrimination of tooth brushing from other similar motions
such as window scrubbing. If individual training is required,
then the human-computer interface must be adapted to ac-
quire such information without burdening the user.

Study design
In our activity recognition study, elastic medical bandages
were used to secure five data collection boards each with
a 2-axis accelerometer to five different points on the body
[4]. Placement of the sensors is shown in Figure 1a. The
devices were light and did not require any wires, minimizing
restrictions on subject movement.

Twenty activities were studied.1 To address ambiguities in
activity labels, subjects were provided short sentence de-
scriptions of each activity. For example, walking was de-
scribed as “walking without carrying any items in your hand
or on your back heavier than a pound” and scrubbing was
described as “using a sponge, towel, or paper towel to wipe

1Walking, walking while carrying items, sitting and relaxing,
working on computer, standing still, eating or drinking, watch-
ing television, reading, running, bicycling, stretching, strength-
training, scrubbing, vacuuming, folding laundry, lying down and
relaxing, brushing teeth, climbing stairs, riding an elevator, and rid-
ing an escalator.



a window” (for a complete list, see [3]). Subjects first partic-
ipated in a semi-naturalistic data collection session and then
participated in a laboratory data collection session.

For semi-naturalistic data collection, subjects completed an
“activity obstacle course”: a series of activities listed on a
worksheet. These activities were disguised as goals in an
obstacle course to minimize subject awareness of how they
performed specific activities. For instance, subjects were
asked to “use the web to find out what the world’s largest
city in terms of population is” instead of being asked more
directly to “use a computer.” Subjects recorded the time they
began each obstacle and the time they completed each ob-
stacle. Subjects completed 20 obstacles, one per activity.
Acceleration data collected between the start and stop times
was labeled with the name of the activity. Subjects were free
to rest between obstacles and proceed through the worksheet
at their own pace as long as they performed obstacles in the
order given. Furthermore, subjects had freedom in how they
performed each obstacle. For example, one obstacle was to
“read the newspaper in the common room. Read the entirety
of at least one non-front page article.” The subject could
choose which and exactly how many articles to read. There
was no researcher supervision of subjects while they col-
lected data under the semi-naturalistic collection protocol.
Many activities were performed outside of the lab, but some
activities, such as watching TV, vacuuming, lying down and
relaxing, could be performed in a common room within the
lab equipped with a television, vacuum, sofa, and reading
materials.

The obstacle course is somewhat analogous to the speech
recognition training situation where a user is asked to read
a passage. A preferable but impractical strategy for acquir-
ing training data would have been to allow subjects to do
whatever they would have done for several days and to la-
bel their natural activity. Unfortunately, this requires direct
observation by a researcher, which is a difficult and invasive
task. Further, direct observation is only possible for research
studies, not for deploying context-aware applications. Alter-
natively, subject self-report of activities via the experience
sampling method [10] could be used, but this can be burden-
some for the user and can miss important activities, as we
discuss in the next case study. Most problematic, however,
is that some activities such as folding laundry, riding esca-
lators, and scrubbing windows occur infrequently. Weeks of
observation time might be required to obtain just a few ex-
amples, and many examples may be needed to train a recog-
nition system. In this work we compromised by using the
obstacle course data collection method.

After obstacle course data collection was completed, sub-
jects were asked to perform a randomized sequence of spe-
cific activities listed on a worksheet. For example, the first 3
activities listed on the worksheet might be “bicycling,” “rid-
ing elevator,” and “standing still.” As subjects performed
each of these activities in order, they labeled the start and
stop times for that activity and made any relevant notes about
that activity such as “I climbed the stairs instead of using the
elevator because the elevator was out of service.” Acceler-

Figure 1: (a) Accelerometers were attached to 20 subjects
on the 4 limb positions shown here (bands), plus the right
hip. (b) Five min. of 2-axis acceleration data annotated
with subject self-report activity labels. Data within 10 s
of self-report labels is discarded (masking).

ation data collected between the start and stop times were
labeled with the name of the activity. We call this the ac-
tivity diary data collection step because the subjects were
explicitly told which activity to perform and for how long.
Even in this step, however, the subjects were not observed
or supervised by laboratory personnel.

One goal of this study was to develop and test algorithms
using training from both the obstacle course data collection
method and the diary data method and to compare the per-
formance of activity recognition algorithms on each.

Algorithm evaluation
Subjects were recruited with fliers seeking research study
participants for compensation. Each subject participated in
two sessions of the study. Data was collected from 13 males
and 7 females ranging in age from 17 to 48. For laboratory
data, each subject collected between 54 and 131 minutes of
activity diary data (M=96 min., SD=16.7 min.). Eight sub-
jects skipped between one to four activities during laboratory
data collection because of factors such as inclement weather,
time constraints, or problems with equipment including the
television, vacuum, computer, and bicycle. Each subject col-
lected between 82 and 160 minutes of semi-naturalistic, ob-
stacle course data (M=104 min., SD=13.4 min.). Subjects
performed each activity on their obstacle course for an aver-
age of 156 s (SD=50 s). Six subjects skipped between one
to two obstacles during semi-naturalistic data collection due
to factors listed earlier.

In the activity diary data, start and stop times for labels were
(imprecisely) hand annotated by the subject. Therefore, data
within 10 s of the listed start and stop times was discarded,
as shown by the masking in Figure 1b.

Mean, energy, entropy, and correlation features were ex-
tracted from the acceleration data [3]. Activity recognition
on these features was performed using machine learning al-



gorithms such as the C4.5 decision tree classifier [19]. Clas-
sifiers were trained and tested using two protocols. Un-
der the first protocol, classifiers were trained on each sub-
ject’s activity diary data and tested on that subject’s obsta-
cle course data. This individual training protocol was re-
peated for all twenty subjects. The activity diary data acts
as the “ground truth” labeled data against which the per-
formance of the algorithms trained with the obstacle course
data is evaluated. Under the second protocol, classifiers were
trained using both the activity diary and obstacle course data
for all subjects except one. The classifiers were then tested
on obstacle course data for the only subject left out of the
training data set. This leave-one-subject-out validation pro-
cess was repeated for all twenty subjects. Mean and stan-
dard deviation for classification accuracy under both proto-
cols using the C4.5 decision tree classifier was as follows:
71.58 ± 7.438 for individual training and 84.26 ± 5.178 for
leave-one-subject-out training. The overall mean recogni-
tion accuracy of 84.26% was achieved for the 20 activities
using five accelerometers without training on an individual’s
own data. In fact, the recognition accuracy was significantly
higher for all the classifier algorithms we tested when us-
ing the leave-one-subject-out validation process [3].2 This
suggests that the effects of individual variation in body ac-
celeration may often be dominated by strong commonalities
between people in activity pattern, at least for activities with
repetitive limb movements. The leave-one-subject-out vali-
dation may have resulted in more generalized and robust ac-
tivity classifiers because a large training set from 19 subjects
was used. The markedly smaller training sets used for the
individual training protocol may have limited the accuracy
of classifiers.

To control for the effects of sample size in comparing leave-
one-subject-out and individual training, preliminary results
were gathered using a larger training data set collected for
three subjects. These subjects were researcher affiliates and
are not included in the results reported for the 20 subjects.
Each of these subjects participated in one obstacle course
and five activity diary data collection sessions. The C4.5
decision tree algorithm was trained for each individual us-
ing data collected from all five of the subjects’ activity diary
sessions and tested on the obstacle course data. The algo-
rithm was also trained on five activity diary data sets from
five random subjects other than the individual and tested on
the individual’s obstacle course data. The results are com-
pared in Figure 2. In this case, individual training resulted
in an increase in recognition accuracy of 4.32% over recog-
nition rates for leave-one-subject-out-training. This differ-
ence shows that given equal amounts of training data, indi-
vidual training can result in better performance than leave-
one-subject-out training. However, the certainty of this con-
clusion is limited by the low number of subjects used for
this comparison and the fact that the three individuals stud-
ied were all affiliates of the researchers. Nonetheless, these
initial results support the need for further study comparing
the accuracy of recognizers trained on data specific to an in-
dividual versus data collected from many individuals.

2The algorithm was evaluated only against known activities, not
activities outside of the 20 used for training.

Classifier Individual Leave-one-subject-out
Training Training

C4.5 77.31 ± 4.328 72.99 ± 8.482

Figure 2: Summary of preliminary classifier results
(mean ± standard deviation) using individual training
and leave-one-subject-out training where both training
data sets use equivalent amounts of data (each from 5
data collection sessions).

Data collection challenges
We achieved classification accuracy rates between 80% to
95% for walking, running, climbing stairs, standing still, sit-
ting, lying down, working on a computer, bicycling, and vac-
uuming, These are comparable with recognition results us-
ing laboratory data from previous work where training data
was collected under significantly more controlled laboratory
conditions [15, 11, 24, 21, 8, 23]. We were able to achieve
84.26% overall recognition in this work acquiring datasets
from subjects with no researcher supervision.

The recognition results from this study suggest that real-
world activity recognition systems that rely on mobile ac-
celerometer sensor data to recognize some everyday activi-
ties may perform well using classifiers that are pre-trained
on large activity data sets rather than on user-specific train-
ing data. Although preliminary results show that individ-
ual training could lead to more accurate activity recognition
given large training sets, pre-trained systems offer greater
convenience by simplifying deployment in non-laboratory
settings. Nonetheless, there may be limitations to using pre-
trained algorithms. Although “word-level” activities such
as running, walking, and scrubbing were accurately recog-
nized, higher level “sentence-level” activities show more vari-
ation among individuals. Ambulation and posture are usu-
ally similar across able-bodied individuals due to shared phys-
iology, but higher level activities such as “taking a coffee
break” or “walking the dog” are more subject to personal
behavioral patterns that are strongly tied to the user’s envi-
ronment.

Further, leave-one-subject-out validation still shows deficien-
cies in recognizing certain activities. Recognition accura-
cies for stretching and riding an elevator were below 50%.
Recognition accuracies for “watching TV” and “riding es-
calator” were 77.29% and 70.56%, respectively. These ac-
tivities have motion characteristics that are easily confused
with those of other activities. User-specific training sets of
sufficient size could lead to improved recognition for these
activities.

In this study we had subjects collect their own training data.
Although the procedure for training data collection was more
free-form than most prior work, some of the activities were
still performed in and around the lab. Subjects may, there-
fore, have performed the actions more consistently than they
would have in their own homes. This motivates our other
work, where all data collection occurs outside of the lab,
such as in subject homes.



OTHER CASE STUDIES
We have conducted two other types of studies where sub-
jects have been asked to self-report on their activities. In the
first type, small state-change sensors were installed in the
homes of subjects, and subjects were asked to use experience
sampling to self-report their activities [9]. The goal was to
develop algorithms that can detect activities such as “cook-
ing,” “grooming,” and “dressing.” In the second method,
context-aware experience sampling was used to collect data
used to develop an algorithm that can detect transitions be-
tween physical activities [22]. Both methods have provided
insight into how one might develop a human-computer in-
terface for collection of training data.

Using ESM for self report of activity
In the home sensor studies, small sensors are placed on any
objects in an apartment that are manipulated by subjects –
light switches, appliances, doors, drawers, etc. [9]. The sen-
sors, which are literally taped onto objects, measure move-
ment of the physical objects. About 100 are installed in a
typical one-bedroom apartment. The devices are then left to
passively collect data, usually for two weeks. To date, we
have installed the sensors in 5 homes (2 researcher homes
and 3 homes of subjects not affiliated with our research project).

Some of the sensor data collected has been used to develop
supervised learning activity recognition algorithms [16]. Be-
cause the sensor firings change dramatically when collected
from different homes, the activity recognition algorithms must
use user-specific data for training. In most of our work to
date, we have used training data that is hand labeled from re-
searchers [16]. However, we have also begun to explore the
collection of user-labeled data. In preliminary experiments
using this sensor system, we attempted to use experience
sampling. The subjects, who lived alone, were given a PDA
running experience sampling software [10]. As the state-
change sensors recorded data about movement of objects,
the subjects used experience sampling to record information
about their activities. We used a high sampling rate; the sub-
jects were beeped via a PDA once every 15 minutes for the
two weeks the sensors were in their homes. At the beep, the
subjects received the following series of questions. First, the
user was asked “What were you doing at the beep?”. The
subject selected the activity that best matched the one that
he/she was doing from a menu listing 33 activities. Next,
the PDA asked “For how long have you been doing this ac-
tivity?” The subject selected from four choices: less than 2
min., less than 5 min, less than 10 min., and more than 10
min. Then, the user was asked, “Were you doing another
activity before the beep?”. If the user responded positively,
the user was presented with another menu of 33 activities to
select from.

The self-reported activities can be correlated with the sensor
data. Figure 3 shows all the sensor activations for one non-
researcher subject one day at about the time she responded to
an experience sampling prompt and reported she was “cook-
ing breakfast.” Unfortunately, we did not receive a sufficient
density of user self reports in this study to train the super-
vised learning algorithms. Instead we had to defer to data

Figure 3: All the sensors that triggered in one 45 minute
window for one subject at the time when that subject self-
reported she was “cooking breakfast” using experience
sampling software.

labeled jointly after the experiment by the investigator and
the subject [16].

The reasons we could not use the self-report data for train-
ing (based on observation of the data and discussion with the
subjects) included the following. Human error. The subjects
specified an activity that they were not actually carrying out
by clicking on the wrong answer box. False starts. The
subjects specified an activity that they began to carry out
but then did not finish. Multitasking. While multitasking,
the subjects reported the primary activity, but the sensor fir-
ings for secondary activities were also recorded by the state-
change sensors. Short duration activities not captured. Ac-
tivities with duration shorter than the ESM sampling rate (15
minutes) such as grooming and preparing a beverage proved
to be difficult to capture. One subject reported she could
wake up and leave for work between sample times. Number
of labels collected. Tired of being interrupted once every
15 minutes, the subjects sometimes did not answer the ESM
questions at the beep, finding a way to ignore the persistent
PDA device or to rapidly hit a “mute” option.

For instance, two (non-researcher) subjects, ages 31 and 80,
answered an average of 18.7 and 20.1 prompts per day (ap-
proximately 33% of total opportunities). However, our re-
search team was able to easily identify more than twice that
number of activities from simple inspection of the data. The
subjects were graciously volunteering for a scientific study
and had agreed in advance to the aggressive 15 min. prompt-
ing schedule. Even so, both subjects were frustrated by the
ESM within several days. Developers of context-aware sys-
tems will not have the luxury of developing systems that are
so intrusive. Yet, even with highly-motivated subjects and
frequent sampling, we did not obtain a sufficient density and
quality of labels for supervised learning algorithm training.

Using CAES for self report of activity
In another study, we used context-aware experience sam-
pling (CAES) to collect training data for a system designed
to detect when people are transitioning between office activ-
ities such as walking, sitting, standing still, etc. [22]. CAES
extends electronic experience sampling to include a set of
sensors that both collect data and proactively trigger data



collection self report [10]. In this case, 18 subjects wore
a wireless Polar heart rate chest-strap monitor that transmit-
ted data to a PDA in real time. The PDA prompted users to
self-report their activity, selecting from a short list of possi-
bilities. The sampling occurred randomly but was also trig-
gered by large changes detected in the subject’s heart rate.
Our goal was to trigger the most prompts at the times we
were most interested in for algorithm development – transi-
tions between physical activities that often cause changes in
heart rate.

This technique of triggering questions based upon sensor
data holds promise for reducing the burden of user self-report
by only triggering prompts at “important” times. In current
work, we are studying how to create context detection algo-
rithms that proactively request data from the user for training
supervised learning algorithms at times specific activities are
detected using other previously trained learning algorithms.

KEY DESIGN OBSERVATIONS
End-users will ultimately balance the inconvenience caused
by training set data collection against the value of the context-
aware application itself. Applications that have low per-
ceived value will require less-invasive data collection meth-
ods. In our experiments we have used subjects who vol-
unteer for studies where some amount of inconvenience is
expected. These subjects are probably much more forgiv-
ing of interruptions and self-reporting of activities than end-
users of ubiquitous computing systems will be. Neverthe-
less, even with highly tolerant subjects, the data collection
methods we have tried require improvement. The three stud-
ies mentioned in this paper have led us to identify five design
goals for context-aware systems that must acquire training
data from users.

Account for the user’s mental model. In qualitative inter-
views, users of experience sampling reported that they
did not mind “telling the computer” what they were do-
ing when they were doing something new. However, they
found ESM frustrating when they had to “teach” the de-
vice “what it should already know.”

Use context-aware sampling. One way to avoid asking users
what they are doing when the users have already indi-
cated particular activities is to use sensors to monitor for
large activity changes. Context-aware experience sam-
pling (e.g. using changes in motion or heart rate) could
dramatically reduce disruptive sampling during many ac-
tivities, clustering prompts for self-report at activity tran-
sitions.

Mix prompting and self report. Another way to minimize
subject annoyance is to allow the users to proactively in-
dicate when they begin and end activities. In post-session
interviews, our subjects expressed an interest and will-
ingness to proactively label in order to reduce random
prompting. However, over time subjects will forget to
proactively label activity. Therefore, the sampling inter-
face must balance proactive reporting and prompted re-
porting to minimize user frustration.

Show users their own data. We have also found that by
showing subjects their own data, they become more per-
sonally invested in the data collection process [5]. A user
interface for collecting supervised training examples may
collect higher quality data if the interface affords opportu-
nities for the users to study the labels they have generated
and “fill in the gaps.”

Make it easy for the user. Our subjects expressed frustra-
tion at having to search long lists to answer questions. A
speech interface with keyword detection, at least for users
who live alone, may allow subjects to more quickly re-
spond to prompts thereby increasing the response rate.

IMPLICATIONS FOR CONTEXT-AWARE DESIGNERS
The case studies suggest that more research is needed to de-
termine the type of supervised training datasets that will be
required to train context-aware systems that detect a user’s
activities. However, activities consisting of highly repet-
itive body motions such as walking, running, and scrub-
bing may require only small amounts of training data to get
good recognition performance. If that is true, user interfaces
could be designed that, out of the box, ask users to complete
a small set of scripted activities from a worksheet. Users
might use a mobile computer device, for example, to manu-
ally indicate to the computer system roughly when the activ-
ities begin and end. We have shown that such data collected
without researcher supervision can be used to train good ac-
tivity detection algorithms. In combination with larger train-
ing sets acquired by professional developers in the labora-
tory, the small user datasets may permit the context-aware
system to begin operating with little time and effort on the
part of the end user.

Activities such as cooking, however, may require a differ-
ent training approach. Activities that do not involve highly
repetitive body motions that are easy to sense, that are rec-
ognized by sensors placed in the environment, and/or that
are performed differently from person to person and envi-
ronment to environment may require a more carefully de-
signed interface to collect training examples that respect the
design guidelines mentioned in the previous section. In sum-
mary, automating the data collection that may be necessary
to train context-aware algorithms in many cases may be as
significant a user interface design challenge as creating the
context-aware applications themselves.
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