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ABSTRACT  
Accurate, real-time measurement of energy expended during 
everyday activities would enable development of novel 
health monitoring and wellness technologies. A technique 
using three miniature wearable accelerometers is presented 
that improves upon state-of-the-art energy expenditure (EE) 
estimation. On a dataset acquired from 24 subjects 
performing gym and household activities, we demonstrate 
how knowledge of activity type, which can be automatically 
inferred from the accelerometer data, can improve EE 
estimates by more than 15% when compared to the best 
estimates from other methods.  
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ACM Classification Keywords 

H5.m. Information interfaces and presentation (e.g., HCI): 
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General Terms 

Algorithms, Human Factors, Measurement. 

INTRODUCTION 

The impact of physical activity on health is well documented. 
Physical inactivity, for example, may contribute to the onset 
of chronic diseases, such as heart disease and diabetes, as 
well as conditions such as overweight and obesity that may 
exacerbate a host of health problems.  Because of the 
important relationship between physical activity and health, 
the physical activity and exercise science research 
communities are in need of better tools to study how and 
when people engage in physical activity and/or sedentary 
behaviors.  

A large volume of work in the literature has shown the value 
of using objective accelerometer-based activity monitors 
[6,7,10,15]. Typically, subjects are asked to wear a monitor 
at the hip that measures hip motion. This motion is then 

mapped onto an energy expenditure (EE) estimate using 
models based on EE measurements taken with indirect 
calorimeters that compute EE from respiratory gases [6,7,15]. 
Linear regression is often used. We show that by detecting 
activity type, these estimates can be improved by more than 
15% on our test dataset. Our focus is on improving EE 
estimation rather than improving the classification of 
activities. On a dataset collected from 24 subjects engaged in 
a variety of activities including postures, ambulation, and 
gym and household activities, we demonstrate that state-of-
the-art algorithms for EE estimation overestimate sedentary 
activities and underestimate vigorous activities. The 
proposed activity-based approach, however, is less sensitive 
to these deviations.  

The algorithm we describe can be run in real-time on a 
mobile phone using a system of miniature wireless sensors 
we developed. The improved estimation of EE could be used 
by physical activity researchers, but also by a growing 
number of mobile applications intended to help people 
continuously measure or motivate physical activity for 
chronic disease prevention and management. 

RELATED WORK  

Physical activity outside of the laboratory is typically 
measured using either self-report surveys or, more recently, 
accelerometer-based activity monitors. Data from either 
method are often converted into EE estimates, which are 
typically measured in kilocalories (Kcals). Different people 
performing the same activity can expend varying amounts of 
energy based on exercise capacity and body size, and small 
changes in sensor placement can impact the precision and 
accuracy of conversion of motion to EE.  

Measurement Tools 

Early physical activity measurement studies used self-
administered or interviewer-administered questionnaires to 
collect detailed information about both occupational and 
leisure-time activities. Self-report methods have been 
conducted using a variety of diaries, logs and more recently 
mobile devices such as PDAs where participants record their 
activities on hourly, daily or weekly basis. This approach 
suffers from a number of limitations, including burden and 
inconvenience in entering data, poor compliance, and 
inaccuracy due to bias or poor memory. 

Objective tools that use accelerometers for measuring 
activities have been developed in research labs as well as in 
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commercial products.  The Actigraph GT1M and GT3X [1] 
devices are widely used by researchers and clinicians. These 
and similar devices measure two or three-axis acceleration in 
a band-limited frequency. An 8-bit analog to digital converter 
samples the data at 10Hz, and these values are then integrated 
over a specific time period (epoch), usually 1 s or 1 min. This 
“activity count” is then mapped to energy expenditure (e.g. 
VO2/kg/min or MET). The limitation is that activity counts 
aggregate information that otherwise might be used to 
discriminate between activity types.  

Energy Expenditure Estimation Methods 

Early studies in exercise physiology [7,8,16] used a single 
regression model and one accelerometer placed at the hip for 
estimating EE across different intensities of walking and 
running activities. These regression models provide close 
estimates for moderate intensity activities but often 
underestimate high intensity and overestimate low intensity 
physical activities. The cumulative EE estimates tend to be 
reasonable when equal amounts of time are spent in high and 
low intensity activities, but skewed otherwise.  

Some of the most popular models are the Freedson [7], 
Swartz [16], and Hendleman [8] regressions. Freedson’s  
model was developed using data from 50 adults during 
treadmill exercise at three different speeds. Swartz’s model is 
based on data from 70 participants who completed less-
structured activities within the categories of yardwork, 
housework, family care, occupation, recreation, and 
conditioning. Hendleman’s “Lifestyle Regression” is based 
on data from 25 subjects who completed four bouts of 
walking at a range of self-selected speeds, played two holes 
of golf, and performed indoor (window washing, dusting, 
vacuuming) and outdoor (lawn mowing, planting shrubs) 
household tasks.  

Crouter et al. proposed an improvement that uses a two-
regression model [6]. This method computes the coefficient 
of variation on the integrated accelerometer signal for a 10 s 
window. The value is then used to distinguish lower intensity 
activities from higher ones. The approach improves EE 
estimates by first classifying activity into one of two classes 
– high or low intensity – and then applying a type-specific 
model.  

More recently, supervised pattern recognition techniques 
have been applied to map from the activity count data to EE, 
in particular, using neural networks [14,15]. Neural networks 
have also been used to estimate activity type from the count 
data [15], and decision trees have been used to estimate 
activity type from vector magnitude data [4]. 

Within ubiquitous and wearable computing, much work has 
been proposed to detect activity type from wearable 
accelerometers using features computed from the raw 
accelerometer signal (versus summarized activity counts 
output by Actigraphs) (e.g., [11,12,17]). Assuming activity 
type is inferred from such methods, EE can be estimated 
using the Compendium of Physical Activities [3] (“the 

Compendium”). This provides person-independent mean 
metabolic equivalent (MET) values, which can be converted 
to EE. This method does not account for differences in age, 
adiposity (i.e. accumulation of fat tissue) and sex. Lester et 
al. demonstrated that activity inference from a single 
accelerometer combined with regression equations from the 
American College of Sports and Medicine can be used to 
estimate calories expended during ambulatory activities. The 
study was validated using indirect calorimetry across 51 
subjects on 3 types of activities including sitting, walking and 
jogging [10]. The approach has not been applied to less 
structured home activities (e.g. washing windows).  

MOTIVATION 

We combine techniques from the fields of 
ubiquitous/wearable computing and exercise science to create 
a tool that improves EE estimation by extending Crouter’s 
approach. Instead of using the coefficient of variation to 
differentiate two activity classes, we use multiple wearable 
sensors to detect specific activity types and then apply a type-
specific or type-and-person-specific model to estimate EE.  

We show that this technique offers improvements over prior 
approaches when tested on a comprehensive dataset of 
postures, ambulatory activities, gym activities, and other 
everyday activities. To our knowledge, this is the first time 
such an approach has been used. Moreover, the algorithms 
we present are amenable to real-time implementation and 
could enable new wearable computing applications that use 
real-time energy expenditure estimation to help with health-
related tasks.  

We note that our goal is not only to generate a good overall 
EE estimate, but also to generate estimates that will not 
consistently overestimate or underestimate particular 
activities. Much of the prior regression-mapping research, 
used extensively in the medical community, produces good 
overall estimates (assuming a distribution of physical 
activities similar to the training set) but systematically 
overestimates or underestimates EE of particular activities. 
The models are heavily dependent on the balance of activities 
used as training data, a limitation avoided in the approach 
presented here.  

 

Figure 1: 24 subjects participated in the experiment 
(circle=female, triangle=male) 



 

EXPERIMENT 

Twenty-four healthy participants (10 male, 14 female) aged 
18-75 years (mean=44.2, standard deviation=12.8), with 
Body Mass Index (BMI) (mean=23.8, standard 
deviation=3.1) from diverse ethnic backgrounds were 
recruited from the San Francisco Bay area to participate in 
the study. Based on answers to a physical activity screening 
questionnaire, people with medical conditions known to 
increase their risk of a medical complication during physical 
activity or a blood pressure measurement over 130/90 mm 
Hg were excluded. Each participant received $50 U.S. for 
participation. The study procedures were approved by a 
human subjects review board. Figure 1 shows the age and 
BMI distribution of the study population. 

Participants were scheduled on different days to perform two 
different types of routines, one in the lab and one inside and 
outside of the lab, while wearing an Oxycon Mobile indirect 
calorimeter [2], an Actigraph GT1M [1] at the dominant hip, 
miniature wireless accelerometers at three locations, and 
some other small sensors not discussed in this work.  
Participants were asked to perform one or both of two 
activity routines. Nineteen participants performed routine 1 
and eighteen participants performed routine 2 for a total of 37 
sessions with 15 participants performing both routines on 
separate days. The routines are defined in Table 1. Each 
routine took about an hour for participants to complete. 
Participants were given instructions on the activities to be 
performed while being monitored by trained personnel. Each 
participant’s heart rate was continuously monitored and 

perceived exertion was assessed. The staff member stopped 
exercise if the heart rate exceeded 85% of age-predicted 
maximal heart rate (Maximal HR=220-age) or if the 
participant’s rating of perceived exertion exceeded 17 on the 
Borg scale of 6 to 20. 

The dataset acquired and used in this work contains 35.7 
hours of annotated laboratory data and 12.3 hours of 
annotated field data. The activities performed during the 
routines are listed in Table 1 with the mean duration (MD) of 
the activities and their MET levels from the Compendium 
[3].  

Oxygen consumption (VO2/kg/min) was measured on a 
breath-by-breath basis using the well-validated second 
generation Oxycon Mobile device from Viasys Healthcare 
[2].  The Oxycon consists of a sensing unit, a wireless 
transmitter unit, a mask and a shoulder-belt system with a 
total weight of approximately 950 g including batteries. 
Before each test, the Oxycon oxygen/carbon dioxide sensor 
was calibrated according to the manufacturer’s instructions. 
Although the device is relatively comfortable, session length 
was limited to approximately an hour to ensure that 
participants did not become uncomfortable. A recent study 
demonstrated that the Oxycon Mobile can be used to measure 
a wide range of VO2 values at different work rates (50, 100 
and 150 Watts) accurately, consistently and reliably [13]. 

Three miniature wireless accelerometers were worn at the 
following locations: the dominant hip to capture overall body 
motion, the dominant thigh to capture lower body motion and 
posture, and the dominant upper arm to capture upper body 
motion and posture. The sensors were small enough to be 
worn on these locations comfortably and without restricting 
movement. The accelerometers transmitted 45 Hz 3-axis +/- 
10g data to two receivers connected to a lightweight laptop 
worn in a backpack. The Actigraph GT1M was set to a 1 s 
epoch and its start time was synchronized with the backpack 
computer that recorded the acceleration data. The laptop was 
also synchronized with the Oxycon mobile device. All 
sensors were tightly placed on the body and inspected 
regularly to ensure that no displacement occurred during data 
collection.  

Research staff carried a mobile device with custom touch-
screen annotation software, which allowed easy entry of 
activity start/stop times. This device was synchronized with 
all the other data collection devices. Figure 2 shows a person 
wearing the experimental setup. 

ANALYSIS  

Although the results presented in this section were computed 
offline for analysis purposes, all components of our system 
also run in real-time on Windows Mobile phones using data 
transmitted from miniature Bluetooth accelerometers.  

At the beginning of each data session, clocks on all devices 
were synchronized within 1 s accuracy. The Oxycon Mobile 
software does not store its reference time and therefore we 

Activity R Code MD 
(min) 

METS 

Sitting slouching 2 SS 5.5 1.0 

Sitting at desk 1,2 SI 2.6 1.0 

Lying down 1,2 LD 4.6 1.0 

Sitting fidgeting hands 1 SH 2.8 1.5 

Sitting fidgeting feet 1 SF 2.0 1.5 

Standing 1,2 ST 8.9 2.0 

Standing folding laundry 2 FL 9.3 2.5 

Walking 2mph 1 WT2 9.2 2.5 

Stretching sitting 2 T 1.5 2.5 

Washing windows 2 WW 5.1 3.0 

Stretching standing 2 A 2.3 2.3 

Cycle erg. 75 rpm/25 watts 1 CYC-25 6.1 3.1 

Tread. walk 3mph/0% grade 1,2 TW3 9.5 3.3 

Vacuuming 2 VA 8.6 3.5 

Mopping 2 MO 9.7 3.5 

Airdyne 30 rpm 2 AIR-30 10.4 4.2 

Tread. walk 3mph/9% grade 1 WT3-9 10.1 4.5 

Cycle erg. + Airdyne 20 rpm 1 AIR-20 5.8 4.5 

Stepping on platform 2 P 1.5 4.9 

Cycle erg. 75 rpm/50 watts 1 CYC-50 5.9 5.2 

Cycle erg. + Airdyne 50 RPM 1 AIR-50 5.4 7.0 

Jog 5 mph 1 JG 1.5 8.0 

Table 1: Activity types observed in both routines (R) of 
the experiment, duration of data collected, and 
corresponding MET levels from the Compendium of 

Physical Activities [3]. 



 

created a special application to record the start time of the 
device when the researcher initiates the data collection.  

Once the session completed, data were downloaded from 
each device. The Actigraph recorded activity counts with 1 s 
epochs. For the Oxycon, the sampling rate depended on the 
respiratory rate of the subject and the type of activity. The 
average respiratory rate ranged from 21 to 35 breaths/min. To 
synchronize the measured volume of oxygen, we applied a 
cubic spline interpolation and resampled the data at 60 Hz. 
For the accelerometer data, we computed an activity count 
similar to the Actigraph activity count. First, we applied a 
two step filtering process to smoothen the accelerometer 
signal and to remove its static component. Specifically, we 
used a Butterworth band pass filter (0.1 Hz-20 Hz band, 4 
poles) and a baseline correction to each acceleration value by 
removing the mean calculated using data from the 5 s that 
precede the acceleration value.  Second, we integrated the 
resulting signal over a window of 1 s and synchronized it 
with the rest of the data. 

 

 

 

 

We describe Figure 3 and Table 2, because we will refer to 
them frequently in the rest of this section. Figure 3 shows 
four plots of an annotated EE trace from 2 different subjects 
performing routines 1 and 2. The x axis represents time in 
minutes. The y axis represents EE in VO2/kg/min. Figures 3A 
and 3B are traces from routine 1 that include 12 exercise 
activities annotated on the horizontal bar plot shown between 
the 2 figures and described in Table 1. Figures 3C and 3D are 
traces from routine 2 that include 12 exercise and household 
activities that are annotated on the horizontal bar plot shown 
between the two figures. All plots display the ground truth 
measured by the Oxycon as a solid  line. Both Figures 3A 
and 3C compare the ground truth to state-of-the-art in EE 
estimation in the exercise physiology field including 
Freedson regression [7], Hendelman regression [8], Swartz 
regression [16], and Crouter’s refined 2-regression model [6]. 
These methods use Actigraph data for EE estimation. Figures 
3B and 3D compare the Oxycon measurements to new 
approaches for EE estimation that are based on a 
combination of activity type detection and either regression 
modeling for EE estimation or direct lookup of MET values 
in the Compendium. 

Table 2 provides more detailed comparisons of the overall 
results across all subjects. First, results from the worst and 
best sessions with respect to EE estimation using our 
proposed method are listed with EE estimates in Kcals, error 
in Kcals, and the percentage of error. Mean session errors 
describes the mean of the percentage errors in energy 
expenditure estimates across all sessions and all subjects. As 
we will discuss, overall results are biased based on the 
relative percentage of types of activity in the test sessions. 
However, the relative percentage experienced by people in 
everyday life may be quite different. Therefore, we also 
present projected daily errors, which is the mean of 
percentage of errors in energy expenditure for all subjects 
based on 15.7 waking hours of a hypothetical weekday.1 

 

Performance of regression methods 

We begin by describing the performance of state-of-the-art 
methods in the exercise physiology field on our test data.  

 

                                                        

1 The hypothetical day, which was constructed, in part, using the 

American Time Use Survey, includes the following activities: 30 min of 
self-care in the morning, 45 min of purposeful exercise, 15 min walking 

the dog, 12 min eating breakfast, 21 min driving to work, 24 min eating 
lunch, 225 min working while standing, 21 min driving back home, 15 min 
walking the dog, 30 min eating dinner, 210 min watching TV and reading 

and the remaining 105 min doing miscellaneous house activities while 
standing. To compute an estimated expenditure, each activity was mapped 
to a similar activity in our test set (e.g., dinner was mapped to sitting 

fidgeting, and walking dog was mapped to treadmill walking at 2mph). 
This is an approximation, but the total estimated waking day expended 
Kcals using the hypothetical day across subjects is 1911, which seems 

reasonable. 

  

Figure 2: A person wearing the experimental setup. 
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Figure 3: Example EE (measured and estimates) for 2 subjects performing routine 1 (A and B) and routine 2 (C and D). 
Figures 3A and 3C compare measured VO2 to Freedson, Swartz, Hendelman and Crouter regressions. Figures 3B and 3D 
compare measured VO2 to subject-specific perfect classification with fitted regression, perfect and automatic classification 
with custom MET lookup and perfect classification with MET lookup. 



 

 

These methods use a single accelerometer at the hip, such as 
the Actigraph, and map their integrated output to energy 
expenditure using regression models. 

Our first observation is that all regression equations 
consistently underestimated moderate to vigorous physical 
activities in routine 1. Figure 3A shows a clear disparity 
between the regression models and the measured Oxycon 
values during treadmill walking at 3 mph with 9% grade 
(WT3-9) and during cycle ergometer (CYC-25, CYC-50) and 
Airdyne activities (AIR-20, AIR-50). The problem is 
influenced by at least two factors. First, the accelerometer at 
the hip does not effectively capture the movement in the 
lower and the upper areas of the body (e.g. during the 
Airdyne biking exercise) so it underestimates the EE for 
those activities. Second, the activity count from an 
accelerometer does not capture the inclination of the surface 
and therefore the fitted regression cannot estimate the 
increase in EE due to inclination. Figure 3A shows little 
difference between the estimated EE for treadmill walking 
3 mph (WT-3) and treadmill walking 3 mph at 9% grade 
(WT3-9) unlike the measured ground truth. Similarly, all 
regression equations consistently underestimated common 
daily activities in routine 2. Figure 3C shows all regressions 
underestimating almost all the activities starting from the 
Airdyne activity (AIR-30) until the end of the session. We 
see slight improvements during vacuuming (VA) and 
stepping on platform (P), most likely because the hip 
accelerometer registered higher activity counts.  

Our second observation is that both the Swartz and 
Hendelman regressions consistently overestimated sedentary 
and low intensity activities. Figure 3A demonstrates the 
problem during the first 5 activities of lying down (LD), 
sitting (SI), sitting at desk (SD), sitting hand fidgeting (SH) 
and sitting feet fidgeting (SF). Increasing the slope of the 
regression can improve the EE estimates for the sedentary 

portion of the routine but will increase the error for well-
fitted regions such as treadmill walking 2 mph (WT2) and 
treadmill walking (WT3). When regressions consistently 
overestimate sedentary activities and underestimate vigorous 
activities by equal EE amounts and for equal intervals of 
time, it is possible to have reasonable cumulative estimates of 
EE because the underestimated portion compensates for the 
overestimated portion of the data. During typical daily 
activities, it is unlikely that a person will have equal intervals 
of underestimated EE (e.g. during vigorous activities) and 
overestimated EE (e.g. during sedentary activities). Further, 
this approach does not provide accurate estimates in real-
time, as might be desired for wearable, ubiquitous computing 
systems.  

Our third observation is that using two regressions to 
separately model sedentary and non-sedentary activities as 
proposed by Crouter et al. has the potential to improve EE 
estimates but still suffers from the same limitations of a 
linear regression model. Specifically, the coefficients of a 
regression can vary arbitrarily depending on the type of 
activities in the dataset and/or the number of examples in 
each different activity type. The regressions are tuned to the 
specific types of activities that were used to generate the 
coefficients; the regression minimizes the residuals by fitting 
at the middle of the data. Figure 3A shows significant errors 
in EE estimates when the regression is used to estimate EE 
for activities that were not included in the original data. 
Unless the data used for training are comprehensive and all 
EE estimates follow a linear trajectory, a regression model 
can deviate significantly from the true EE. 

Based on our observations, we postulate that by generalizing 
Crouter’s approach to use a separate regression for each 
activity in combination with activity type detection, we can 
further improve EE estimates. We examine this approach in 
the next section. 

Method Worst Session 
(EE=299Kcals) 

Best Session (EE=428Kcals) Mean 
Session 
Errors 

Projected 
Daily Errors 

EE (Kcals) Error 
(Kcals) 

Error 
(%) 

EE 
(Kcals) 

Error 
(Kcals) 

Error 
(%) 

Freedson  163 -136 -45% 281 -147 -34% 33.5% 12.7% 
Swartz  251 -48 -16% 370 -57 -13% 29.2% 50.9% 
Hendelman  259 -39 -13% 349 -79 -18% 34.2% 58.3% 
Crouter  159 -140 -47% 350 -78 -18% 38.5% 23.8% 
PC w/ MET lookup 236 -63 -21% 359 -68 -15% 88.9% 24.7% 
Auto ID w/ MET lookup 186 -113 -38% 193 -235 -55% 37.3% 26.5% 
PC w/ fitted regression 299 -0.3 -0.1% 431 3 0.6% 1.5% 1.3% 
Auto ID w/ fitted regression 306 7.8 2.3% 435 7 2% 3.9% 2.1% 
PC w/ custom MET lookup 210 -89 -30% 425 -3 -0.6% 13.6% 3.2% 
Auto ID w/ custom MET lookup 219 -81 -27% 405 -23 -5% 13.1% 3.3% 
Table 2: Comparison of different methods to estimate EE. Mean session errors is the mean of the percentage errors of 
energy expenditure across all sessions and all subjects. Projected daily errors is the mean of percentage of errors in 
energy expenditure for all subjects based on 15.7 waking hours of a typical waking day with an average projected EE per 
subject of 1911 Kcals. Auto ID is short for automatic type identification. PC is short for perfect type classifier.  



 

Performance of the type classifier 

Generalizing Crouter’s approach requires automatic detection 
of physical activity type.  

Automatic Detection of Physical Activity Type    

Previous work [17] demonstrates that decision tree classifiers 
with multiple accelerometers can be used to effectively 
recognize a variety of postures and physical activities and are 
conducive to real-time implementation, even on mobile 
devices. They have performed well in prior work, and we use 
them here.  

The body can block the 2.4 GHz range low-power radio 
signal used by the accelerometers deployed in this 
experiment, so to compensate for signal loss due to body 
blockage, we resampled the data using cubic spline 
interpolation at 128 Hz. If there was significant signal loss in 
a window exceeding 50% of the expected sampling rate then 
we omitted that window from the analysis. This amounted to 
less than 4% of the data. 

To recognize users’ activities, we calculated time and 
frequency domain features for each acceleration stream from 
3 sensors: the dominant hip, the dominant thigh and the 
dominant upper arm. Previous work [17] has shown that 
these locations worked well for a variety of physical and 
daily living activities. The data were broken into 50% 
overlapping sliding windows of length 1 s. The features that 
we used are: (1) The distances between the means of the axes 
of each accelerometer to capture sensor orientation for 
posture; (2) Variance to capture the variability in different 
directions; (3) Correlation coefficients to capture the 
simultaneous motion in each axis direction; (4) Entropy to 
capture the type of physical activity; and (5) FFT peaks and 
frequencies to differentiate between different intensities of 
the movements. The features are then assembled into a vector 
and used as input to the C4.5 classifier in the WEKA toolkit 
[18]. WEKA is then used to evaluate classification 
performance using within-subject 10-fold cross validation.  

Table 3 shows the overall performance results of the activity 
recognition averaged across 37 sessions that included 24 
participants. Accuracy (A), Precision (P) and Recall (R) are 
the average accuracies, precisions and recalls across all 
sessions. 

At first glance, the performance of the algorithm on subject 
dependent training is not as high as we might expect. The 
mean accuracy, precision and recall are 49%, 0.46 and 0.49 
respectively, where random guessing is 4.5%. Examination 
of the confusion matrices, however, shows that incorrect 
predictions are mostly classified into similar activities. For 
instance, sitting slouching (1.0 MET) was frequently 
misclassified as sitting at desk (1.0 MET). Similarly, stepping 

on platform (5.0 METs) is consistently misclassified as 
treadmill walking at 3mph (3.3 METs). There are at least 3 
reasons for the suboptimal performance of the classifier. 
First, the datasets are relatively small. Second, the number of 
examples varies greatly across different classes.  For 

example, treadmill activities can have 10 min of data while 
stepping on platform can have 1.5 min of data. Third, most 
errors occur on activities with short training data samples 
(e.g. stepping on platform or standing stretching) and our 
performance results are averaged across all activities without 
weighting them. Fortunately, as we show shortly, because the 
type estimation errors tend to be confused between activities 
with similar EE levels, we can use the activity type to 
improve EE estimation.  

We also ran the activity type detection on data using a leave-
one-subject-out cross validation. The performance of the 
algorithm in this subject-independent case is much lower. 
The mean accuracy, precision and recall are 26%, 0.30 and 
0.26 respectively. Upon inspecting the decision trees, it 
becomes clear that the dataset is overfit to specific subjects 
and that more training data are needed. Notably though, we 
observed many cases where the algorithm made errors 
confusing similar activities such as vacuuming and mopping. 
Further improving the type classification, as well as making 
the type classification subject independent (a topic for future 
work), would only improve the results we present here on the 
use of type detection to improve EE estimation.   

Performance of auto-detected type + regression  

In this section, we examine a generalization to Crouter’s 
approach that uses two regressions to estimate EE for 
sedentary and non-sedentary activities. The proposed 
approach uses C4.5 to recognize activity type and then uses a 
different regression line for each activity to estimate EE. This 

Activity Subject Dependent 

A P R 

Sitting slouching 45% 0.68 0.45 

Sitting at Desk 56% 0.39 0.56 

Lying down 20% 0.19 0.19 

Sitting fidgeting hands 0% 0.00 0.00 

Sitting fidgeting feet 99% 0.97 0.99 

Standing 99% 0.90 0.99 

Standing folding laundry 55% 0.44 0.54 

Walking 2mph/0% grade 75% 0.76 0.74 

Stretching sitting 0% 0.00 0.00 

Washing windows 53% 0.52 0.53 

Stretching Standing 0% 0.00 0.00 

Cycle erg. 75 rpm/25 watts 53% 0.35 0.53 

Tread. walk. 3mph/0%grade 80% 0.67 0.80 

Vacuuming 72% 0.71 0.72 

Mopping 31% 0.27 0.31 

Airdyne 30 rpm 95% 0.93 0.95 

Tread. walk. 3mph/9%grade 72% 0.71 0.72 

Cycle erg.+Airdyne 20 rpm 70% 0.59 0.70 

Stepping on platform 0% 0.00 0.00 

Cycle erg. 75 rpm/50 watts 29% 0.22 0.29 

Cycle erg.+ Airdyne 50 rpm 55% 0.55 0.56 

Jog 5 mph 29% 0.33 0.30 

Mean 49% 0.46 0.49 

Table 3: Activity recognition results averaged across 37 

sessions, where subject-specific training data was used.  



 

approach overcomes the non-linearity due to different EE 
levels of activities. The classifier is trained using subject-
specific data and the regression coefficients are estimated 
using subject-specific data. The results are generated using 
10-fold cross validation. 

We first present results when having a perfect classifier to 
serve as a benchmark for comparison. Figures 3B and 3D 
show the case for a perfect classifier with a regression trained 
on subject-specific data. The EE estimates for all activities 
are lined up close to the mean of the measured EE. Table 2 
shows that the average error in EE across all subjects and 
sessions in the case of a perfect classifier is 1.5%. In the two 
sample sessions in Table 2, errors in EE with a perfect 
classifier are negligible: -0.1% (-0.3Kcals) during a 299 Kcal 
session and 0.6% (3 Kcals) during a 428 Kcal session.  

When using the automatic type identification with subject-
specific fitted regression (Auto ID with fitted regression), the 
mean error in EE estimates across all sessions and subjects 
increases to 3.9%. For a projected day of a typical person 
without accounting for sleep time, the error drops to 2.1%. 
Figures 3B and 3D show that the EE estimates from the 
classifier with fitted regression often overlap with the perfect 
case. Note that when misclassification errors occurred, 
activities with similar EE levels were picked. Figure 3D 
shows a slightly underestimated EE for stepping on platform 
(P). The activity is misclassified for treadmill walking 3 mph 
(WT3), which still has a regression with a high EE. The 
spikes shown on the Auto ID EE line in Figures 3B and 3D 
are intermittent misclassifications that result in picking an 
inappropirate regression for the activity. 

While this approach is accurate, it is impractical because the 
fitted regression requires measuring EE values to estimate the 
coefficients for each subject, and it is only possible to collect 
these values in lab settings. An interesting observation, 
however, is that all fitted regressions had slopes close to 0 
and the intercept determined the estimated EE value. This 
suggests that the regression can be replaced with a simple 
lookup of an offset that should provide a good EE estimate 
given activity type. We explore this idea in the following 
section. 

Performance of auto-detected type + MET Lookup 

The Compendium of Physical Activities [3] consists of a list 
of the most common everyday activities and their associated 
energy expenditure in metabolic equivalents (METS) where 
1 MET=3.5 VO2/kg/min. Here we consider the possibility of 
using automatic detection of the activity and then estimating 
the EE by looking up the appropriate MET value in the 
Compendium.2   

                                                        

2 cycle ergometer + Airdyne 50 rpm was not in the Compendium; we 

consulted with experts in exercise physiology to assign it a proper value. 

Figure 3B shows the perfect classifier with MET lookup 
underestimating the measured EE values on most activities. 
The mean session error is 88.9% and the mean error for a 
projected day is 24.7%. Figure 3D shows a similar pattern 
with the EE being underestimated most of the time.  Results 
from individual sessions in Table 2 are consistent with our 
observation that this approach underestimates EE values 
(Session 1, Error=-63Kcals (-21%) and Session 2 Error=     -
68Kcals (-15%)). 

An unexpected result is that the mean error for the automatic 
type detection (37.3%) is significantly smaller than the mean 
error for the perfect recognition case (88.9%). With perfect 
classification, the EE estimates are mostly underestimating 
the measured value, as demonstrated earlier, whereas 
misclassifications (shown as spikes in Figures 3B and 3D) 
pick higher EE estimates that partially compensate for the 
under estimation demonstrated in the perfect classification 
case. 

The primary limitation of the Compendium is that it does not 
account for differences among individuals that impact EE, 
such as age, adiposity or sex. The authors of the 
Compendium acknowledge that individual differences in 
energy expenditure for the same activity can be large [3]. 

Performance of auto-detected type + Custom Lookup 

To overcome the deviations in MET values from measured 
EE values, we explore the possibility of customizing MET 
values to account for individual differences. The proposed 
approach requires EE measurements for different activities 
from a subsample of individuals and information about their 
age, height, weight and resting heart rate.  Data for each 
activity across the subsample are then combined and used to 
fit a separate linear regression that uses age, height, weight 
and resting heart rate to estimate the measured EE. The 
developed regressions for different activities are then used on 
other individuals to estimate EE given their activity.  We 
evaluate the viability of this approach using leave-one-
subject-out validation where we generate EE estimation 
equations for each activity from 23 subjects and use the 
equations to predict EE for the left-out subject.  

Figure 3B and 3D show significant improvements using a 
custom equation over lookup from the Compendium. The 
mean session error using a perfect classifier is reduced for the 
sessions and the projected day from 88.9% and 24.7% to 
13.6% and 3.2%, respectively. Similarly, the mean session 
error using automatic classification is reduced for the 
sessions and the projected day from 37.3% and 26.5% to 
13.1% and 3.3%, respectively. 

Table 2 shows the best and worst case sessions for this 
approach. In the worst session, the error for the perfect 
classifier is -89 Kcals (-30%) and -81 Kcals (-27%) using 
automatic classification. In this case, the regression equation 
improved the MET estimates relative to a Compendium MET 
lookup but still underestimated the values. Notably, this 
particular subject had the lowest resting heart rate among our 



 

subjects (47 bpm, mean= 65 bpm), which may partly explain 
why the estimation was suboptimal. Estimating our 
regression from larger subject samples can potentially 
account for such differences.  

The best case session shows negligible deviations from the 
measured EE. The mean error for the perfect classifier is 
-3Kcals (-0.6%) and -23Kcals (-5%) using automatic 
classification. Errors from other methods range between 
-57Kcals (-13%) and -147Kcals (-34%). Importantly, we 
emphasize that our approach as shown in Figures 3B and 3D 
closely matches the measured VO2 values in real-time. Other 
approaches might have cumulative EE estimates that are 
close to the measured EE, but they consistently overestimate 
and underestimate sedentary and vigorous activities 
respectively. Matching the true EE values is particularly 
important for ubiquitous computing applications that require 
good real-time estimates, perhaps to drive novel health 
interventions. Although this approach is not as accurate as 
the approach that uses a regression fitted to subject-specific 
VO2 data, it is more amenable to real deployments because 
no training data from an indirect calorimeter are needed. 

DISCUSSION 

In this paper, we compare a variety of energy expenditure 
estimation methods to several existing approaches. The 
analyses show that automatic detection of physical activity 
type followed by use of activity-specific regressions provides 
the best cumulative estimation of EE (session error=3.9%, 
daily error=2.1%). The regressions rarely overestimate or 
underestimate and map closely to the mean of the measured 
EE. This approach, however, is impractical because it 
requires subject-specific VO2 measurements that can only be 
gathered in lab settings. A good compromise is to use 
automatic detection of physical activities and then to lookup 
an activity-specific regression that maps age, height, weight 
and resting heart rate to an EE value. Using leave-one-
subject-out validation, we have shown that this approach can 
result in good EE estimates (session error=13.1%, daily 
error=3.3%).   

The proposed approach that uses custom MET lookup 
outperformed all regressions that were evaluated in this 
work. Comparing our approach to the best performing 
regression, we see an improvement in the mean session error 
of 15.6% and 15.1% using perfect and automatic 
classification respectively. For the projected day, we see an 
improvement of 9.5% and 9.4% using perfect and automatic 
classification respectively. Using our approach, we do not see 
dramatic deviations from the measured EE as shown in 
Figure 3. This is attributed to the use of custom regressions 
that fit to individual activities. Further, having separate 
regressions for each activity is conducive to incremental 
learning, where adding activities does not require 
recalculating regression coefficients as would be the case in 
other regression methods. Importantly, our approach does not 
require EE measurements from individuals; we have shown 

that reasonable EE estimates can be predicted using subject-
independent data given the activity type.  

Although the type classifier misclassified a significant 
portion of the data, the type estimation errors tend to be 
confused between activities that are similar and that have 
similar EE levels. For type recognition, our dataset is 
challenging relative to many others reported in prior work, 
with many similar activities, such as sitting and sitting and 

fidgeting. The fact that the technique works well despite the 
imperfections of the type classifier, which can most likely be 
improved, is a strength of the type-to-EE mapping approach. 
A variation of our approach would train the classifier on 
clusters of activities with similar EE levels. While this may 
improve the accuracy of the classifier, it probably would 
have minimal impact on the EE estimation because 
misclassifications resulted in similar EE estimates. 

For a typical waking day, the estimated average caloric 
expenditure of a subject was 1911Kcals. For such a day, our 
approach introduced an error of 63 Kcals using the automatic 
type classification approach. The errors using other 
approaches are 235 Kcals for Freedson, 974 Kcals for 
Swartz, 1108 Kcals for Hendelman, 455 Kcals for Crouter’s 
and 506 Kcals for Compendium lookup. A 100 Kcal/day 
imbalance is believed to be sufficient to lead to weight gain 
[9], so an overall improvement of 172 Kcals (in comparison 
to Freedson) over a waking day would be a meaningful one.  

It might be possible with more refinement of our regressions 
and larger datasets to reduce these errors. The number of 
wearable sensors can possibly be reduced if we take 
advantage of accelerometers in handheld devices such as 
phones. Compared to recent work from Lester et al. [10] that 
uses a single accelerometer and looks at 3 types of activities 
– walking, sitting and running – our approach outperforms 
their field results by 7% and underperforms their lab results 
by 3%. We emphasize that direct comparisons between 
studies are difficult to interpret since the results are highly 
dependent on the range of activities and types of sensors in 
the study. 

An alternative to our proposed approach can use non-linear 
models to estimate EE. There is, however, an important 
advantage to detecting activity type and then mapping it to an 
EE estimate. When errors are made on activity type or when 
the regression consistently overestimates or underestimates 
EE levels, users may be able to correct the system. Previous 
work [5] has shown that enabling end-users to correct the 
system when it makes errors is important. 

Our results are consistent with intuition: that type detection 
using a system that captures lower and upper body motion 
might work well on many common activities, and that a type-
specific EE estimation approach – essentially a generalization 
of the Crouter approach – should outperform other linear 
methods. Widely popular methods that rely on using a single 
regression model (e.g. Freedson’s and Hendelman’s 
equations) cannot account for the variability in everyday 



 

activities. By using a combination of pattern recognition 
algorithms and regression models that are specifically tuned 
to individual activities, the estimate of EE is improved by 
15% using subject-dependent activity-type training data.  

Based on this work, we therefore make the following 
recommendations for researchers developing ubiquitous 
computing health systems to estimate energy expenditure:  

• Use more than a single sensor at the hip. A single sensor 
will not properly capture some activities, such as cycling. 
A sensor placed at the upper and lower body will improve 
type detection and type-based EE estimation.  

• Avoid using a single regression model, which will 
systematically underestimate and overestimate certain 
activities. If possible, use type-specific regression models. 
This is particularly important for real-time systems, where 
end-users may be interested in accurate estimates of what 
is being expended right now, rather than simply overall 
estimates for the day.  

• Evaluate the proposed system’s error not only on collected 
data sessions with balanced activities but also in 
“simulated days” where activities are weighted towards 
common sedentary behavior. There is a fundamental 
limitation to much of the prior work because the makeup 
of the training data may skew performance of the model 
towards high-intensity activities that are uncommon for 
most people.  

Our work is based on testing with 24 healthy subjects and 22 
activity types. Despite the limited data set, we have shown 
that using activity type to EE estimation is a promising 
approach that can result in significant improvements to 
current EE estimation methods that are used in the exercise 
physiology field and that may enable new types of wearable 
fitness monitoring systems. In future work, we will expand 
both the size of our test set and activity types and deploy the 
algorithm as part of a real-time feedback system. We will 
also explore the applicability of our results to populations 
with different fitness levels and BMIs. Finally, we emphasize 
that the system discussed in this work is fully implemented to 
run in real-time on Windows Mobile phones.  
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